mapReduce

On this page本页内容

Note注意
Aggregation Pipeline as Alternative to Map-Reduce聚合管道作为Map Reduce的替代方案

Starting in MongoDB 5.0, map-reduce is deprecated:从MongoDB 5.0开始,不推荐使用map-reduce

  • Instead of map-reduce, you should use an aggregation pipeline. 您应该使用聚合管道,而不是map-reduceAggregation pipelines provide better performance and usability than map-reduce.聚合管道比map-reduce提供更好的性能和可用性。
  • You can rewrite map-reduce operations using aggregation pipeline stages, such as $group, $merge, and others.您可以使用聚合管道阶段(如$group$merge等)重写map-reduce操作。
  • For map-reduce operations that require custom functionality, you can use the $accumulator and $function aggregation operators, available starting in version 4.4. 对于需要自定义功能的map-reduce操作,您可以使用$accumulator$function聚合运算符,从4.4版开始提供。You can use those operators to define custom aggregation expressions in JavaScript.您可以使用这些运算符在JavaScript中定义自定义聚合表达式。

For examples of aggregation pipeline alternatives to map-reduce, see:有关映射减少的聚合管道备选方案的示例,请参阅:

Definition定义

mapReduce

The mapReduce command allows you to run map-reduce aggregation operations over a collection.mapReduce命令允许您对集合运行map-reduce聚合操作。

Syntax语法

Note注意

Starting in version 4.4, MongoDB ignores the verbose option.从4.4版开始,MongoDB忽略了verbose选项。

Starting in version 4.2, MongoDB deprecates:从4.2版开始,MongoDB不推荐:

  • The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.map-reduce选项用于创建新的分片集合,以及使用sharded选项进行map-reduce。要输出到分片集合,请首先创建分片集合。MongoDB 4.2也不赞成替换现有的分片集合。
  • The explicit specification of nonAtomic: false option.nonAtomic: false选项的显式规范。

The mapReduce command has the following syntax:mapReduce命令具有以下语法:

db.runCommand( {
     mapReduce: <string>,
     map: <string or JavaScript>,
     reduce: <string or JavaScript>,
     finalize: <string or JavaScript>,
     out: <output>,
     query: <document>,
     sort: <document>,
     limit: <number>,
     scope: <document>,
     jsMode: <boolean>,
     verbose: <boolean>,
     bypassDocumentValidation: <boolean>,
     collation: <document>,
     writeConcern: <document>,
     comment: <any>
} )

Command Fields命令字段

The command takes the following fields as arguments:该命令将以下字段作为参数:

Field字段Type类型Description描述
mapReducestring

The name of the collection on which you want to perform map-reduce. 要对其执行映射缩减的集合的名称。This collection will be filtered using query before being processed by the map function.此集合将在map函数处理之前使用query进行筛选。

Note注意

Views视图 do not support map-reduce operations.不支持map-reduce操作。

mapJavaScript or String

A JavaScript function that associates or "maps" a value with a key and emits the key and value pair. 一个JavaScript函数,将valuekey关联或“映射”,并发出键和值对。You can specify the function as BSON type JavaScript (i.e. BSON type 13) or String (i.e. BSON type 2).您可以将函数指定为BSON类型JavaScript(即BSON类型13)或String(即BSON类型2)。

See for more information.有关详细信息,请参阅。

reduceJavaScript or String

A JavaScript function that "reduces" to a single object all the values associated with a particular key. 一个JavaScript函数,将与特定key关联的所有values“减少”为单个对象。You can specify the function as BSON type JavaScript (i.e. BSON type 13) or String (i.e. BSON type 2).您可以将函数指定为BSON类型JavaScript(即BSON类型13)或String(即BSON类型2)。

See for more information.有关详细信息,请参阅。

outstring or document

Specifies where to output the result of the map-reduce operation. 指定输出贴图缩小操作结果的位置。You can either output to a collection or return the result inline. 您可以输出到集合,也可以内联返回结果。On a primary member of a replica set you can output either to a collection or inline, but on a secondary, only inline output is possible.在副本集的成员上,可以输出到集合或内联,但在辅助成员上,只能输出内联。

See for more information.有关详细信息,请参阅。

querydocument

Optional. 可选。Specifies the selection criteria using query operators for determining the documents input to the map function.使用查询运算符指定选择条件,以确定输入到map函数的文档。

sortdocument

Optional. 可选。Sorts the input documents. 输入文档进行排序。This option is useful for optimization. 此选项对优化很有用。For example, specify the sort key to be the same as the emit key so that there are fewer reduce operations. 例如,将排序键指定为与发射键相同,以便减少减少操作。The sort key must be in an existing index for this collection.排序键必须位于此集合的现有索引中。

limitnumber

Optional. 可选。Specifies a maximum number of documents for the input into the map function.指定map映射函数的最大文档数。

finalizeJavaScript or String

Optional. 可选。A JavaScript function that modifies the output after the reduce function. reduce函数之后修改输出的JavaScript函数。You can specify the function as BSON type JavaScript (i.e. BSON type 13) or String (i.e. BSON type 2).您可以将函数指定为BSON类型JavaScript(即BSON类型13)或String(即BSON类型2)。

See for more information.有关详细信息,请参阅。

scopedocument

Optional. 可选。Specifies global variables that are accessible in the map, reduce and finalize functions.指定可在mapreducefinalize函数中访问的全局变量。

jsModeboolean

Optional. 可选。Specifies whether to convert intermediate data into BSON format between the execution of the map and reduce functions.指定在执行mapreduce函数之间是否将中间数据转换为BSON格式。

Defaults to false.默认为false

If false:如果为false

  • Internally, MongoDB converts the JavaScript objects emitted by the map function to BSON objects. 在内部,MongoDB将map函数发出的JavaScript对象转换为BSON对象。These BSON objects are then converted back to JavaScript objects when calling the reduce function.当调用reduce函数时,这些BSON对象会被转换回JavaScript对象。
  • The map-reduce operation places the intermediate BSON objects in temporary, on-disk storage. map-reduce操作将中间BSON对象放置在临时磁盘存储中。This allows the map-reduce operation to execute over arbitrarily large data sets.这允许映射缩减操作在任意大的数据集上执行。

If true:如果为true

  • Internally, the JavaScript objects emitted during map function remain as JavaScript objects. 在内部,map函数期间发出的JavaScript对象仍然是JavaScript对象。There is no need to convert the objects for the reduce function, which can result in faster execution.不需要为reduce函数转换对象,这会导致更快的执行。
  • You can only use jsMode for result sets with fewer than 500,000 distinct key arguments to the mapper's emit() function.对于映射器的emit()函数的不同key参数少于500000的结果集,只能使用jsMode
verboseboolean

Optional. 可选。Specifies whether to include the timing information in the result information. 指定是否在结果信息中包含timing信息。Set verbose to true to include the timing information.verbose设置为true以包含timing信息。

Defaults to false.默认为false

Starting in MongoDB 4.4, this option is ignored. 从MongoDB 4.4开始,此选项将被忽略。The result information always excludes the timing information. 结果信息总是不包括timing信息。You can view timing information by running explain with the mapReduce command in the "executionStats" or "allPlansExecution"verbosity modes.您可以通过在verbosity模式"executionStats""allPlansExecution"下使用mapReduce命令运行explain来查看计时信息。

bypassDocumentValidationboolean

Optional. 可选。Enables mapReduce to bypass document validation during the operation. 使mapReduce能够在操作期间绕过文档验证。This lets you insert documents that do not meet the validation requirements.这允许您插入不符合验证要求的文档。

Note注意

If the output option is set to inline, no document validation occurs. 如果输出选项设置为inline,则不会进行文档验证If the output goes to a collection, mapReduce observes any validation rules which the collection has and does not insert any invalid documents unless the bypassDocumentValidation parameter is set to true.如果输出到集合,mapReduce将遵守集合具有的任何验证规则,并且不会插入任何无效文档,除非bypasseDocumentValidation参数设置为true

collationdocument

Optional.可选。

Specifies the collation to use for the operation.指定用于操作的排序规则

collation allows users to specify language-specific rules for string comparison, such as rules for lettercase and accent marks.允许用户为字符串比较指定特定于语言的规则,例如字母和重音标记的规则。

The collation option has the following syntax:排序规则选项具有以下语法:

collation: {
   locale: <string>,
   caseLevel: <boolean>,
   caseFirst: <string>,
   strength: <int>,
   numericOrdering: <boolean>,
   alternate: <string>,
   maxVariable: <string>,
   backwards: <boolean>
}

When specifying collation, the locale field is mandatory; all other collation fields are optional. 指定排序规则时,locale字段是必填的;所有其他排序字段都是可选的。For descriptions of the fields, see Collation Document.有关字段的说明,请参阅排序规则文档

If the collation is unspecified but the collection has a default collation (see db.createCollection()), the operation uses the collation specified for the collection.如果未指定排序规则,但集合具有默认排序规则(请参见db.createCollection()),则操作将使用为集合指定的排序规则。

If no collation is specified for the collection or for the operations, MongoDB uses the simple binary comparison used in prior versions for string comparisons.如果没有为集合或操作指定排序规则,MongoDB将使用以前版本中使用的简单二进制比较进行字符串比较。

You cannot specify multiple collations for an operation. 不能为一个操作指定多个排序规则。For example, you cannot specify different collations per field, or if performing a find with a sort, you cannot use one collation for the find and another for the sort.例如,不能为每个字段指定不同的排序规则,或者如果使用排序执行查找,则不能将一种排序规则用于查找,另一种用于排序。

writeConcerndocument

Optional. 可选。A document that expresses the write concern to use when outputing to a collection. 表示输出到集合时要使用的写入关注点的文档。Omit to use the default write concern.省略以使用默认写入关注点。

commentany

Optional. 可选。A user-provided comment to attach to this command. 用户提供了附加到此命令的注释。Once set, this comment appears alongside records of this command in the following locations:设置后,此注释将与此命令的记录一起显示在以下位置:

A comment can be any valid BSON type(string, integer, object, array, etc).注释可以是任何有效的BSON类型(字符串、整数、对象、数组等)。

New in version 4.4.在版本4.4中新增

Usage用法

The following is a prototype usage of the mapReduce command:以下是mapReduce命令的原型用法:

var mapFunction = function() { ... };
var reduceFunction = function(key, values) { ... };
db.runCommand(
               {
                 mapReduce: <input-collection>,
                 map: mapFunction,
                 reduce: reduceFunction,
                 out: { merge: <output-collection> },
                 query: <query>
               }
             )
Note注意
JavaScript in MongoDB

Although mapReduce uses JavaScript, most interactions with MongoDB do not use JavaScript but use an idiomatic driver in the language of the interacting application.尽管mapReduce使用JavaScript,但与MongoDB的大多数交互都不使用JavaScript而是使用交互应用程序语言中的惯用驱动程序

Requirements for the map Functionmap函数要求

The map function is responsible for transforming each input document into zero or more documents. map函数负责将每个输入文档转换为零个或多个文档。It can access the variables defined in the scope parameter, and has the following prototype:它可以访问scope参数中定义的变量,并具有以下原型:

function() {
   ...
   emit(key, value);
}

The map function has the following requirements:map函数有以下要求:

  • In the map function, reference the current document as this within the function.map函数中,在函数中将当前文档引用为this
  • The map function should not access the database for any reason.map函数不应出于任何原因访问数据库。
  • The map function should be pure, or have no impact outside of the function (i.e. side effects.)map函数应该是纯函数,或者在函数之外没有影响(即副作用)
  • The map function may optionally call emit(key,value) any number of times to create an output document associating key with value.map函数可以可选地调用emit(key,value)任意次数,以创建将keyvalue关联的输出文档。
  • In MongoDB 4.2 and earlier, a single emit can only hold half of MongoDB's maximum BSON document size. 在MongoDB 4.2及更早版本中,单个发出只能容纳MongoDB最大BSON文档大小的一半。MongoDB removes this restriction starting in version 4.4.MongoDB从4.4版开始删除此限制。
  • Starting in MongoDB 4.4, mapReduce no longer supports the deprecated BSON type JavaScript code with scope (BSON type 15) for its functions. The map function must be either BSON type String (BSON type 2) or BSON type JavaScript (BSON type 13). To pass constant values which will be accessible in the map function, use the scope parameter.

    The use of JavaScript code with scope for the map function has been deprecated since version 4.2.1.自4.2.1版以来,不推荐对map函数使用带有scope的JavaScript代码。

The following map function will call emit(key,value) either 0 or 1 times depending on the value of the input document's status field:

function() {
    if (this.status == 'A')
        emit(this.cust_id, 1);
}

The following map function may call emit(key,value) multiple times depending on the number of elements in the input document's items field:

function() {
    this.items.forEach(function(item){ emit(item.sku, 1); });
}

Requirements for the reduce Function

The reduce function has the following prototype:

function(key, values) {
   ...
   return result;
}

The reduce function exhibits the following behaviors:

  • The reduce function should not access the database, even to perform read operations.
  • The reduce function should not affect the outside system.
  • MongoDB will not call the reduce function for a key that has only a single value. The values argument is an array whose elements are the value objects that are "mapped" to the key.
  • MongoDB can invoke the reduce function more than once for the same key. In this case, the previous output from the reduce function for that key will become one of the input values to the next reduce function invocation for that key.
  • The reduce function can access the variables defined in the scope parameter.
  • The inputs to reduce must not be larger than half of MongoDB's maximum BSON document size. This requirement may be violated when large documents are returned and then joined together in subsequent reduce steps.
  • Starting in MongoDB 4.4, mapReduce no longer supports the deprecated BSON type JavaScript code with scope (BSON type 15) for its functions. The reduce function must be either BSON type String (BSON type 2) or BSON type JavaScript (BSON type 13). To pass constant values which will be accessible in the reduce function, use the scope parameter.

    The use of JavaScript code with scope for the reduce function has been deprecated since version 4.2.1.

Because it is possible to invoke the reduce function more than once for the same key, the following properties need to be true:

  • the type of the return object must be identical to the type of the value emitted by the map function.
  • the reduce function must be associative. The following statement must be true:

    reduce(key, [ C, reduce(key, [ A, B ]) ] ) == reduce( key, [ C, A, B ] )
  • the reduce function must be idempotent. Ensure that the following statement is true:

    reduce( key, [ reduce(key, valuesArray) ] ) == reduce( key, valuesArray )
  • the reduce function should be commutative: that is, the order of the elements in the valuesArray should not affect the output of the reduce function, so that the following statement is true:

    reduce( key, [ A, B ] ) == reduce( key, [ B, A ] )

Requirements for the finalize Function

The finalize function has the following prototype:

function(key, reducedValue) {
   ...
   return modifiedObject;
}

The finalize function receives as its arguments a key value and the reducedValue from the reduce function. Be aware that:

  • The finalize function should not access the database for any reason.
  • The finalize function should be pure, or have no impact outside of the function (i.e. side effects.)
  • The finalize function can access the variables defined in the scope parameter.
  • Starting in MongoDB 4.4, mapReduce no longer supports the deprecated BSON type JavaScript code with scope (BSON type 15) for its functions. The finalize function must be either BSON type String (BSON type 2) or BSON type JavaScript (BSON type 13). To pass constant values which will be accessible in the finalize function, use the scope parameter.

    The use of JavaScript code with scope for the finalize function has been deprecated since version 4.2.1.

out Options选项

You can specify the following options for the out parameter:可以为out参数指定以下选项:

Output to a Collection

This option outputs to a new collection, and is not available on secondary members of replica sets.此选项输出到新集合,并且在副本集的辅助成员上不可用。

out: <collectionName>
Output to a Collection with an Action输出到带有操作的集合
Note注意

Starting in version 4.2, MongoDB deprecates:从4.2版开始,MongoDB不推荐:

  • The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. map reduce选项用于创建新的分片集合,以及使用sharded选项进行map-reduce。To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.要输出到分片集合,请首先创建分片集合。MongoDB 4.2也不赞成替换现有的分片集合。
  • The explicit specification of nonAtomic: false option.nonAtomic: false选项的显式规范。

This option is only available when passing a collection that already exists to out. 此选项仅在将已存在的集合传递给out时可用。It is not available on secondary members of replica sets.它在副本集的辅助成员上不可用。

out: { <action>: <collectionName>
        [, db: <dbName>]
        [, sharded: <boolean> ]
        [, nonAtomic: <boolean> ] }

When you output to a collection with an action, the out has the following parameters:当您使用操作输出到集合时,out具有以下参数:

  • <action>: Specify one of the following actions::指定以下操作之一:

    • replace

      Replace the contents of the <collectionName> if the collection with the <collectionName> exists.如果具有<collectionName>的集合存在,则替换<collecationName>的内容。

    • merge

      Merge the new result with the existing result if the output collection already exists. 如果输出集合已存在,则将新结果与现有结果合并。If an existing document has the same key as the new result, overwrite that existing document.如果现有文档与新结果具有相同的键,则覆盖该现有文档。

    • reduce

      Merge the new result with the existing result if the output collection already exists. 如果输出集合已存在,请将新结果与现有结果合并。If an existing document has the same key as the new result, apply the reduce function to both the new and the existing documents and overwrite the existing document with the result.如果现有文档与新结果具有相同的键,请将reduce函数应用于新文档和现有文档,并用结果覆盖现有文档。

  • db:

    Optional. 可选。The name of the database that you want the map-reduce operation to write its output. 希望map-reduce操作写入其输出的数据库的名称。By default this will be the same database as the input collection.默认情况下,这将是与输入集合相同的数据库。

  • sharded:

    Note注意

    Starting in version 4.2, the use of the sharded option is deprecated.从4.2版开始,不推荐使用sharded选项。

    Optional. 可选。If true and you have enabled sharding on output database, the map-reduce operation will shard the output collection using the _id field as the shard key.如果为true,并且您已经在输出数据库上启用了分片,则map-reduce操作将使用_id字段作为分片键来分片输出集合。

    If true and collectionName is an existing unsharded collection, map-reduce fails.如果truecollectionName是现有的未共享集合,则map-reduce失败。

  • nonAtomic:

    Note注意

    Starting in MongoDB 4.2, explicitly setting nonAtomic to false is deprecated.从MongoDB 4.2开始,不推荐将nonAtomic显式设置为false

    Optional. 可选。Specify output operation as non-atomic. 将输出操作指定为非原子操作。This applies only to the merge and reduce output modes, which may take minutes to execute.这仅适用于mergereduce输出模式,这可能需要几分钟的时间才能执行。

    By default nonAtomic is false, and the map-reduce operation locks the database during post-processing.

    If nonAtomic is true, the post-processing step prevents MongoDB from locking the database: during this time, other clients will be able to read intermediate states of the output collection.

Output Inline输出内联

Perform the map-reduce operation in memory and return the result. 在内存中执行map reduce操作并返回结果。This option is the only available option for out on secondary members of replica sets.此选项是复制副本集辅助成员上out唯一可用的选项。

out: { inline: 1 }

The result must fit within the maximum size of a BSON document.结果必须符合BSON文档的最大大小

Required Access所需访问权限

If your MongoDB deployment enforces authentication, the user executing the mapReduce command must possess the following privilege actions:如果MongoDB部署强制身份验证,则执行mapReducee命令的用户必须拥有以下权限操作:

Map-reduce with {out : inline} output option:

Map-reduce with the replace action when outputting to a collection:

Map-reduce with the merge or reduce actions when outputting to a collection:

The readWrite built-in role provides the necessary permissions to perform map-reduce aggregation.

Restrictions限制

MongoDB drivers automatically set afterClusterTime for operations associated with causally consistent sessions. Starting in MongoDB 4.2, the mapReduce command no longer support afterClusterTime. As such, mapReduce cannot be associatd with causally consistent sessions.

Map-Reduce Examples

In mongosh, the db.collection.mapReduce() method is a wrapper around the mapReduce command. The following examples use the db.collection.mapReduce() method:

The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.

Create a sample collection orders with these documents:

db.orders.insertMany([
   { _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" },
   { _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" },
   { _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"},
   { _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }
])

Return the Total Price Per Customer返回每个客户的总价

Perform the map-reduce operation on the orders collection to group by the cust_id, and calculate the sum of the price for each cust_id:

  1. Define the map function to process each input document:定义映射函数以处理每个输入文档:

    • In the function, this refers to the document that the map-reduce operation is processing.在函数中,this引用map-reduce操作正在处理的文档。
    • The function maps the price to the cust_id for each document and emits the cust_id and price.
    var mapFunction1 = function() {
       emit(this.cust_id, this.price);
    };
  2. Define the corresponding reduce function with two arguments keyCustId and valuesPrices:使用两个参数keyCustIdvaluesPrices定义相应的reduce函数:

    • The valuesPrices is an array whose elements are the price values emitted by the map function and grouped by keyCustId.
    • The function reduces the valuesPrice array to the sum of its elements.
    var reduceFunction1 = function(keyCustId, valuesPrices) {
       return Array.sum(valuesPrices);
    };
  3. Perform map-reduce on all documents in the orders collection using the mapFunction1 map function and the reduceFunction1 reduce function:使用mapFunction1映射函数和reduceFunction1-reduce函数对orders集合中的所有文档执行映射缩减:

    db.orders.mapReduce(
       mapFunction1,
       reduceFunction1,
       { out: "map_reduce_example" }
    )

    This operation outputs the results to a collection named map_reduce_example. 此操作将结果输出到名为map_reduce_example的集合。If the map_reduce_example collection already exists, the operation will replace the contents with the results of this map-reduce operation.如果map_reduce_example集合已经存在,则该操作将用此map-reduce操作的结果替换内容。

  4. Query the map_reduce_example collection to verify the results:

    db.map_reduce_example.find().sort( { _id: 1 } )

    The operation returns these documents:该操作将返回以下文档:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }
Aggregation Alternative聚合备选方案

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以在不定义自定义函数的情况下重写map-reduce操作:

db.orders.aggregate([
   { $group: { _id: "$cust_id", value: { $sum: "$price" } } },
   { $out: "agg_alternative_1" }
])
  1. The $group stage groups by the cust_id and calculates the value field (See also $sum). The value field contains the total price for each cust_id.

    The stage output the following documents to the next stage:

    { "_id" : "Don Quis", "value" : 155 }
    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Busby Bee", "value" : 125 }
  2. Then, the $out writes the output to the collection agg_alternative_1. Alternatively, you could use $merge instead of $out.
  3. Query the agg_alternative_1 collection to verify the results:查询agg_alternative_1集合以验证结果:

    db.agg_alternative_1.find().sort( { _id: 1 } )

    The operation returns the following documents:该操作将返回以下文档:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }
Tip提示
See also: 参阅:

For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的备选方案,请参阅Map-Reduce到聚合管道转换示例

Calculate Order and Total Quantity with Average Quantity Per Item用每个项目的平均数量计算订单和总数量

In the following example, you will see a map-reduce operation on the orders collection for all documents that have an ord_date value greater than or equal to 2020-03-01.在下面的示例中,您将看到ord_date值大于或等于2020-03-01的所有文档的orders集合上的map-reduce操作。

The operation in the example:示例中的操作:

  1. Groups by the item.sku field, and calculates the number of orders and the total quantity ordered for each sku.item.sku字段分组,并计算每个sku的订单数量和总订单数量。
  2. Calculates the average quantity per order for each sku value and merges the results into the output collection.计算每个sku值的每个订单的平均数量,并将结果合并到输出集合中。

When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. 合并结果时,如果现有文档与新结果具有相同的键,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则该操作将插入该文档。

Example steps:

  1. Define the map function to process each input document:定义映射函数以处理每个输入文档:

    • In the function, this refers to the document that the map-reduce operation is processing.在函数中,this是指map reduce操作正在处理的文档。
    • For each item, the function associates the sku with a new object value that contains the count of 1 and the item qty for the order and emits the sku (stored in the key) and the value.
     var mapFunction2 = function() {
        for (var idx = 0; idx < this.items.length; idx++) {
           var key = this.items[idx].sku;
           var value = { count: 1, qty: this.items[idx].qty };
           emit(key, value);
        }
    };
  2. Define the corresponding reduce function with two arguments keySKU and countObjVals:使用两个参数keySKUcountObjVals定义相应的reduce函数:

    • countObjVals is an array whose elements are the objects mapped to the grouped keySKU values passed by map function to the reducer function.是一个数组,其元素是映射到由map函数传递给reducer函数的分组keySKU值的对象。
    • The function reduces the countObjVals array to a single object reducedValue that contains the count and the qty fields.
    • In reducedVal, the count field contains the sum of the count fields from the individual array elements, and the qty field contains the sum of the qty fields from the individual array elements.
    var reduceFunction2 = function(keySKU, countObjVals) {
       reducedVal = { count: 0, qty: 0 };
       for (var idx = 0; idx < countObjVals.length; idx++) {
           reducedVal.count += countObjVals[idx].count;
           reducedVal.qty += countObjVals[idx].qty;
       }
       return reducedVal;
    };
  3. Define a finalize function with two arguments key and reducedVal. 定义一个带有两个参数keyreducedVal的finalize函数。The function modifies the reducedVal object to add a computed field named avg and returns the modified object:该函数修改reducedVal对象以添加名为avg的计算字段,并返回修改后的对象:

    var finalizeFunction2 = function (key, reducedVal) {
      reducedVal.avg = reducedVal.qty/reducedVal.count;
      return reducedVal;
    };
  4. Perform the map-reduce operation on the orders collection using the mapFunction2, reduceFunction2, and finalizeFunction2 functions:使用mapFunction2reduceFunction3finalizeFunction4函数对orders集合执行map-reduce操作:

    db.orders.mapReduce(
       mapFunction2,
       reduceFunction2,
       {
         out: { merge: "map_reduce_example2" },
         query: { ord_date: { $gte: new Date("2020-03-01") } },
         finalize: finalizeFunction2
       }
     );

    This operation uses the query field to select only those documents with ord_date greater than or equal to new Date("2020-03-01"). Then it outputs the results to a collection map_reduce_example2.

    If the map_reduce_example2 collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. 如果map_reduce_example2集合已经存在,则该操作将将现有内容与此map-reduce操作的结果合并。That is, if an existing document has the same key as the new result, the operation overwrites the existing document. 也就是说,如果现有文档具有与新结果相同的键,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则该操作将插入该文档。

  5. Query the map_reduce_example2 collection to verify the results:查询map_reduce_example2集合以验证结果:

    db.map_reduce_example2.find().sort( { _id: 1 } )

    The operation returns these documents:该操作将返回以下文档:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Aggregation Alternative聚合备选方案

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以在不定义自定义函数的情况下重写map-reduce操作:

db.orders.aggregate( [
   { $match: { ord_date: { $gte: new Date("2020-03-01") } } },
   { $unwind: "$items" },
   { $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } }  },
   { $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } },
   { $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace",  whenNotMatched: "insert" } }
] )
  1. The $match stage selects only those documents with ord_date greater than or equal to new Date("2020-03-01").$match阶段仅选择ord_date大于或等于new Date("2020-03-01")的文档。
  2. The $unwind stage breaks down the document by the items array field to output a document for each array element. $unwind阶段通过items数组字段分解文档,为每个数组元素输出一个文档。For Example:例如:

    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    ...
  3. The $group stage groups by the items.sku, calculating for each sku:

    • The qty field. The qty field contains the
      total qty ordered per each items.sku (See $sum).
    • The orders_ids array. The orders_ids field contains an
      array of distinct order _id's for the items.sku (See $addToSet).
    { "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
    { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
    { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
    { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
    { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }
  4. The $project stage reshapes the output document to mirror the map-reduce's output to have two fields _id and value. The $project sets:
  5. The $unwind stage breaks down the document by the items array field to output a document for each array element. For Example:例如:

    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    ...
  6. The $group stage groups by the items.sku, calculating for each sku:

    • The qty field. The qty field contains the total qty ordered per each items.sku using $sum.
    • The orders_ids array. The orders_ids field contains an array of distinct order _id's for the items.sku using $addToSet.
    { "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
    { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
    { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
    { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
    { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }
  7. The $project stage reshapes the output document to mirror the map-reduce's output to have two fields _id and value. The $project sets:

    • the value.count to the size of the orders_ids array using $size.
    • the value.qty to the qty field of input document.
    • the value.avg to the average number of qty per order using $divide and $size.
    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
  8. Finally, the $merge writes the output to the collection agg_alternative_3. 最后,$merge将输出写入集合agg_alternative_3If an existing document has the same key _id as the new result, the operation overwrites the existing document. 如果现有文档具有与新结果相同的key_id,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则该操作将插入该文档。
  9. Query the agg_alternative_3 collection to verify the results:查询agg_alternative_3集合以验证结果:

    db.agg_alternative_3.find().sort( { _id: 1 } )

    The operation returns the following documents:该操作将返回以下文档:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Tip提示
See also: 参阅:

For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的备选方案,请参阅将Reduce映射到聚合管道转换示例

For more information and examples, see the Map-Reduce page and Perform Incremental Map-Reduce.有关更多信息和示例,请参阅Map—Reduce页面执行增量Map—Reduce

Output输出

If you set the out parameter to write the results to a collection, the mapReduce command returns a document in the following form:如果设置out参数以将结果写入集合,mapReduce命令将返回以下格式的文档:

{ "result" : "map_reduce_example", "ok" : 1 }
{
    "result" : <string or document>,
    "timeMillis" : <int>,
    "counts" : {
        "input" : <int>,
        "emit" : <int>,
        "reduce" : <int>,
        "output" : <int>
    },
    "ok" : <int>,
}

If you set the out parameter to output the results inline, the mapReduce command returns a document in the following form:

{
    "results" : [
       {
          "_id" : <key>,
          "value" :<reduced or finalizedValue for key>
       },
       ...
    ],
    "ok" : <int>
}
{
    "results" : [
       {
          "_id" : <key>,
          "value" :<reduced or finalizedValue for key>
       },
       ...
    ],
    "timeMillis" : <int>,
    "counts" : {
       "input" : <int>,
       "emit" : <int>,
       "reduce" : <int>,
       "output" : <int>
    },
    "ok" : <int>
}
mapReduce.result

For output sent to a collection, this value is either:对于发送到集合的输出,该值为:

  • a string for the collection name if out did not specify the database name, or如果out未指定数据库名称,则返回集合名称的字符串,或者
  • a document with both db and collection fields if out specified both a database and collection name.如果out既指定了数据库名称又指定了集合名称,则同时包含dbcollection字段的文档。
mapReduce.results

For output written inline, an array of resulting documents. 对于内联写入的输出,生成的文档数组。Each resulting document contains two fields:每个结果文档包含两个字段:

  • _id field contains the key value,字段包含key值,
  • value field contains the reduced or finalized value for the associated key.字段包含关联key的缩减或最终值。
mapReduce.timeMillis

Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本

The command execution time in milliseconds.命令执行时间(毫秒)。

mapReduce.counts

Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本

Various count statistics from the mapReduce command.mapReduce命令中的各种计数统计信息。

mapReduce.counts.input

Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本

The number of input documents, which is the number of times the mapReduce command called the map function.输入文档数,即mapReduce命令调用map函数的次数。

mapReduce.counts.emit

Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本

The number of times the mapReduce command called the emit function.mapReduce命令调用emit函数的次数。

mapReduce.counts.reduce

Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本

The number of times the mapReduce command called the reduce function.mapReduce命令调用reduce函数的次数。

mapReduce.counts.output

Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本

The number of output values produced.生成的输出值的数量。

mapReduce.ok

A value of 1 indicates the mapReduce command ran successfully. 值为1表示mapReduce命令已成功运行。A value of 0 indicates an error.值为0表示错误。

In addition to the aforementioned command specific return fields, the db.runCommand() includes additional information:

  • for replica sets: $clusterTime, and operationTime.
  • for sharded clusters: operationTime and $clusterTime.

See db.runCommand Response for details on these fields.

Additional Information附加信息

←  distinctGeospatial Commands →