On this page本页内容
db.collection.updateMany(filter, update, options)
This is a mongosh method. This is not the documentation for Node.js or other programming language specific driver methods.
In most cases, mongosh methods work the same way as the legacy mongo shell methods. However, some legacy methods are unavailable in mongosh.
For the legacy mongo shell documentation, refer to the documentation for the corresponding MongoDB Server release:
For MongoDB API drivers, refer to the language specific MongoDB driver documentation.
Updates all documents that match the specified filter for a collection.更新与集合的指定筛选器匹配的所有文档。
The updateMany() method has the following form:updateMany()方法具有以下形式:
db.collection.updateMany(
<filter>,
<update>,
{
upsert: <boolean>,
writeConcern: <document>,
collation: <document>,
arrayFilters: [ <filterdocument1>, ... ],
hint: <document|string>
// Available starting in MongoDB 4.2.1
}
)
The updateMany() method takes the following parameters:updateMany()方法采用以下参数:
| filter | document |
| ||||||
| update | document or pipeline |
| ||||||
upsert | boolean |
| ||||||
writeConcern | document |
| ||||||
collation | document |
collation: {
locale: <string>,
caseLevel: <boolean>,
caseFirst: <string>,
strength: <int>,
numericOrdering: <boolean>,
alternate: <string>,
maxVariable: <string>,
backwards: <boolean>
}
| ||||||
arrayFilters | array |
// INVALID [ { "x.a": { $gt: 85 } }, { "x.b": { $gt: 80 } } ]
// Example 1 [ { $or: [{"x.a": {$gt: 85}}, {"x.b": {$gt: 80}}] } ] // Example 2 [ { $and: [{"x.a": {$gt: 85}}, {"x.b": {$gt: 80}}] } ] // Example 3 [ { "x.a": { $gt: 85 }, "x.b": { $gt: 80 } } ]
| ||||||
| hint | Document or string |
|
The method returns a document that contains:该方法返回包含以下内容的文档:
acknowledged as true if the operation ran with write concern or false if write concern was disabledacknowledged为布尔值true;如果禁用写入关注,则为布尔值falsematchedCountmodifiedCountupsertedId_id for the upserted document_idOn deployments running with 在使用authorization, the user must have access that includes the following privileges:authorization运行的部署上,用户必须具有包括以下权限的访问权限:
update action on the specified collection(s).update操作。find action on the specified collection(s).find操作。insert action on the specified collection(s) if the operation results in an upsert.upsert,则对指定集合执行insert操作。The built-in role 内置角色readWrite provides the required privileges.readWrite提供所需的权限。
updateMany() updates all matching documents in the collection that match the filter, using the update criteria to apply modifications.updateMany()更新集合中与filter匹配的所有匹配文档,使用update条件应用修改。
If 如果upsert: true and no documents match the filter, db.collection.updateMany() creates a new document based on the filter and update parameters.upsert:true并且没有文档与filter匹配,db.collection.updateMany()将基于筛选器和更新参数创建一个新文档。
If you specify 如果在分片集合上指定upsert: true on a sharded collection, you must include the full shard key in the filter. upsert:true,则必须在filter中包含完整的分片键。For additional 有关其他db.collection.updateMany() behavior, see Sharded Collections.db.collection.updateMany()行为,请参阅分片集合。
For the modification specification, the 对于修改规范,db.collection.updateMany() method can accept a document that only contains update operator expressions to perform.db.collection.updateMany()方法可以接受只包含要执行的更新运算符表达式的文档。
For example:
db.collection.updateMany(
<query>,
{ $set: { status: "D" }, $inc: { quantity: 2 } },
...
)
Starting in MongoDB 4.2, the 从MongoDB 4.2开始,db.collection.updateMany() method can accept an aggregation pipeline [ <stage1>, <stage2>, ... ] that specifies the modifications to perform. db.collection.updateMany()方法可以接受指定要执行的修改的聚合管道[ <stage1>, <stage2>, ... ]。The pipeline can consist of the following stages:管道可包括以下阶段:
$addFields$set$project$unset$replaceRoot$replaceWith.Using the aggregation pipeline allows for a more expressive update statement, such as expressing conditional updates based on current field values or updating one field using the value of another field(s).使用聚合管道允许使用更具表现力的更新语句,例如基于当前字段值表达条件更新,或使用另一个字段的值更新一个字段。
For example:
db.collection.updateMany(
<query>,
[
{ $set: { status: "Modified", comments: [ "$misc1", "$misc2" ] } },
{ $unset: [ "misc1", "misc2" ] }
]
...
)
For examples, see Update with Aggregation Pipeline.有关示例,请参阅使用聚合管道更新。
If an update operation changes the document size, the operation will fail.如果更新操作更改了文档大小,则操作将失败。
You cannot use the 不能对时间序列集合使用updateMany() method on a time series collection.updateMany()方法。
For a 对于包含db.collection.updateMany() operation that includes upsert: true and is on a sharded collection, you must include the full shard key in the filter.upsert:true且位于分片集合上的db.collection.updateMany()操作,必须在filter中包含完整的分片键。
updateMany() is not compatible with db.collection.explain().updateMany()与db.collection.explain()不兼容。
db.collection.updateMany() can be used inside multi-document transactions.可以在多文档事务处理中使用。
In most cases, multi-document transaction incurs a greater performance cost over single document writes, and the availability of multi-document transactions should not be a replacement for effective schema design. 在大多数情况下,多文档事务比单文档写入带来更高的性能成本,并且多文档事务的可用性不应取代有效的模式设计。For many scenarios, the denormalized data model (embedded documents and arrays) will continue to be optimal for your data and use cases. 对于许多场景,非规范化的数据模型(嵌入式文档和数组)将继续最适合您的数据和用例。That is, for many scenarios, modeling your data appropriately will minimize the need for multi-document transactions.也就是说,对于许多场景,适当地建模您的数据将最小化对多文档事务的需要。
For additional transactions usage considerations (such as runtime limit and oplog size limit), see also Production Considerations.有关其他事务使用注意事项(如运行时限制和oplog大小限制),请参阅生产注意事项。
Starting in MongoDB 4.4, you can create collections and indexes inside a multi-document transaction if the transaction is not a cross-shard write transaction.从MongoDB 4.4开始,如果事务不是跨分片写事务,则可以在多文档事务中创建集合和索引。
Specifically, in MongoDB 4.4 and greater, 具体来说,在MongoDB 4.4及更高版本中,带有db.collection.updateMany() with upsert: true can be run on an existing collection or a non-existing collection. upsert:true的db.collection.updateMany()可以在现有集合或不存在的集合上运行。If run on a non-existing collection, the operation creates the collection.如果在不存在的集合上运行,则该操作将创建集合。
In MongoDB 4.2 and earlier, the operation must be run on an existing collection.在MongoDB 4.2及更早版本中,操作必须在现有集合上运行。
Do not explicitly set the write concern for the operation if run in a transaction. 如果在事务中运行,请不要显式设置操作的写入关注点。To use write concern with transactions, see Transactions and Write Concern.要将写关注点用于事务,请参阅事务和写关注点。
The restaurant collection contains the following documents:restaurant集合包含以下文档:
{ "_id" : 1, "name" : "Central Perk Cafe", "violations" : 3 }
{ "_id" : 2, "name" : "Rock A Feller Bar and Grill", "violations" : 2 }
{ "_id" : 3, "name" : "Empire State Sub", "violations" : 5 }
{ "_id" : 4, "name" : "Pizza Rat's Pizzaria", "violations" : 8 }
The following operation updates all documents where 以下操作将更新所有violations are greater than 4 and $set a flag for review:violations大于4的文档,并$set标记以供审查:
try { db.restaurant.updateMany( { violations: { $gt: 4 } }, { $set: { "Review" : true } } ); } catch (e) { print(e); }
The operation returns:操作返回:
{ "acknowledged" : true, "matchedCount" : 2, "modifiedCount" : 2 }
The collection now contains the following documents:该集合现在包含以下文档:
{ "_id" : 1, "name" : "Central Perk Cafe", "violations" : 3 }
{ "_id" : 2, "name" : "Rock A Feller Bar and Grill", "violations" : 2 }
{ "_id" : 3, "name" : "Empire State Sub", "violations" : 5, "Review" : true }
{ "_id" : 4, "name" : "Pizza Rat's Pizzaria", "violations" : 8, "Review" : true }
If no matches were found, the operation instead returns:如果未找到匹配项,则操作将返回:
{ "acknowledged" : true, "matchedCount" : 0, "modifiedCount" : 0 }
Setting 如果未找到匹配项,设置upsert: true would insert a document if no match was found.upsert:true将插入文档。
Starting in MongoDB 4.2, the 从MongoDB 4.2开始,db.collection.updateMany() can use an aggregation pipeline for the update. db.collection.updateMany()可以使用聚合管道进行更新。The pipeline can consist of the following stages:管道可包括以下阶段:
$addFields$set$project$unset$replaceRoot$replaceWith.Using the aggregation pipeline allows for a more expressive update statement, such as expressing conditional updates based on current field values or updating one field using the value of another field(s).使用聚合管道允许使用更具表现力的更新语句,例如基于当前字段值表达条件更新,或使用另一个字段的值更新一个字段。
The following examples uses the aggregation pipeline to modify a field using the values of the other fields in the document.以下示例使用聚合管道使用文档中其他字段的值修改字段。
Create a 使用以下文档创建members collection with the following documents:members集合:
db.members.insertMany( [
{ "_id" : 1, "member" : "abc123", "status" : "A", "points" : 2, "misc1" : "note to self: confirm status", "misc2" : "Need to activate", "lastUpdate" : ISODate("2019-01-01T00:00:00Z") },
{ "_id" : 2, "member" : "xyz123", "status" : "A", "points" : 60, "misc1" : "reminder: ping me at 100pts", "misc2" : "Some random comment", "lastUpdate" : ISODate("2019-01-01T00:00:00Z") }
] )
Assume that instead of separate 假设您希望将这些字段集合到一个新的注释字段中,而不是单独的misc1 and misc2 fields, you want to gather these into a new comments field. misc1和misc2字段。The following update operation uses an aggregation pipeline to:以下更新操作使用聚合管道:
comments field and set the lastUpdate field.comments字段并设置lastUpdate字段。misc1 and misc2 fields for all documents in the collection.misc1和misc2字段。db.members.updateMany(
{ },
[
{ $set: { status: "Modified", comments: [ "$misc1", "$misc2" ], lastUpdate: "$$NOW" } },
{ $unset: [ "misc1", "misc2" ] }
]
)
The $set stage:$set阶段:
comments whose elements are the current content of the misc1 and misc2 fields andcomments,其元素是misc1和misc2字段的当前内容lastUpdate to the value of the aggregation variable NOW. lastUpdate设置为聚合变量NOW的值。NOW resolves to the current datetime value and remains the same throughout the pipeline. NOW解析为当前日期时间值,并在整个管道中保持不变。$$ and enclose in quotes.$$并用引号括起来。$unset stage removes the misc1 and misc2 fields.$unset阶段删除misc1和misc2字段。After the command, the collection contains the following documents:命令后,集合包含以下文档:
{ "_id" : 1, "member" : "abc123", "status" : "Modified", "points" : 2, "lastUpdate" : ISODate("2020-01-23T05:50:49.247Z"), "comments" : [ "note to self: confirm status", "Need to activate" ] }
{ "_id" : 2, "member" : "xyz123", "status" : "Modified", "points" : 60, "lastUpdate" : ISODate("2020-01-23T05:50:49.247Z"), "comments" : [ "reminder: ping me at 100pts", "Some random comment" ] }
The aggregation pipeline allows the update to perform conditional updates based on the current field values as well as use current field values to calculate a separate field value.聚合管道允许更新基于当前字段值执行条件更新,并使用当前字段值来计算单独的字段值。
For example, create a 例如,使用以下文档创建students3 collection with the following documents:students3集合:
db.students3.insertMany( [
{ "_id" : 1, "tests" : [ 95, 92, 90 ], "lastUpdate" : ISODate("2019-01-01T00:00:00Z") },
{ "_id" : 2, "tests" : [ 94, 88, 90 ], "lastUpdate" : ISODate("2019-01-01T00:00:00Z") },
{ "_id" : 3, "tests" : [ 70, 75, 82 ], "lastUpdate" : ISODate("2019-01-01T00:00:00Z") }
] )
Using an aggregation pipeline, you can update the documents with the calculated grade average and letter grade.使用聚合管道,可以使用计算的平均成绩和字母成绩更新文档。
db.students3.updateMany(
{ },
[
{ $set: { average : { $trunc: [ { $avg: "$tests" }, 0 ] } , lastUpdate: "$$NOW" } },
{ $set: { grade: { $switch: {
branches: [
{ case: { $gte: [ "$average", 90 ] }, then: "A" },
{ case: { $gte: [ "$average", 80 ] }, then: "B" },
{ case: { $gte: [ "$average", 70 ] }, then: "C" },
{ case: { $gte: [ "$average", 60 ] }, then: "D" }
],
default: "F"
} } } }
]
)
The $set stage:$set阶段:
average based on the average of the tests field. tests字段的平均值计算新的字段average。$avg for more information on the $avg aggregation operator and $trunc for more information on the $trunc truncate aggregation operator.$avg聚合运算符的详细信息,请参阅$avg;有关$trunc截断聚合运算符的更多信息,请参阅$trunc。lastUpdate to the value of the aggregation variable NOW. lastUpdate设置为聚合变量NOW的值。NOW resolves to the current datetime value and remains the same throughout the pipeline. NOW解析为当前日期时间值,并在整个管道中保持不变。$$ and enclose in quotes.$$并用引号括起来。$set stage calculates a new field grade based on the average field calculated in the previous stage. $set阶段根据上一阶段计算的平均字段计算新字段grade。$switch for more information on the $switch aggregation operator.$switch聚合运算符的更多信息,请参阅$switch。After the command, the collection contains the following documents:命令后,集合包含以下文档:
{ "_id" : 1, "tests" : [ 95, 92, 90 ], "lastUpdate" : ISODate("2020-01-24T17:31:01.670Z"), "average" : 92, "grade" : "A" }
{ "_id" : 2, "tests" : [ 94, 88, 90 ], "lastUpdate" : ISODate("2020-01-24T17:31:01.670Z"), "average" : 90, "grade" : "A" }
{ "_id" : 3, "tests" : [ 70, 75, 82 ], "lastUpdate" : ISODate("2020-01-24T17:31:01.670Z"), "average" : 75, "grade" : "C" }
The inspectors collection contains the following documents:inspectors集合包含以下文档:
{ "_id" : 92412, "inspector" : "F. Drebin", "Sector" : 1, "Patrolling" : true },
{ "_id" : 92413, "inspector" : "J. Clouseau", "Sector" : 2, "Patrolling" : false },
{ "_id" : 92414, "inspector" : "J. Clouseau", "Sector" : 3, "Patrolling" : true },
{ "_id" : 92415, "inspector" : "R. Coltrane", "Sector" : 3, "Patrolling" : false }
The following operation updates all documents with 以下操作更新Sector greater than 4 and inspector equal to "R. Coltrane":Sector大于4且inspector等于"R. Coltrane"的所有文件:
try { db.inspectors.updateMany( { "Sector" : { $gt : 4 }, "inspector" : "R. Coltrane" }, { $set: { "Patrolling" : false } }, { upsert: true } ); } catch (e) { print(e); }
The operation returns:操作返回:
{
"acknowledged" : true,
"matchedCount" : 0,
"modifiedCount" : 0,
"upsertedId" : ObjectId("56fc5dcb39ee682bdc609b02")
}
The collection now contains the following documents:该集合现在包含以下文档:
{ "_id" : 92412, "inspector" : "F. Drebin", "Sector" : 1, "Patrolling" : true },
{ "_id" : 92413, "inspector" : "J. Clouseau", "Sector" : 2, "Patrolling" : false },
{ "_id" : 92414, "inspector" : "J. Clouseau", "Sector" : 3, "Patrolling" : true },
{ "_id" : 92415, "inspector" : "R. Coltrane", "Sector" : 3, "Patrolling" : false },
{ "_id" : ObjectId("56fc5dcb39ee682bdc609b02"), "inspector" : "R. Coltrane", "Patrolling" : false }
Since no documents matched the filter, and 由于没有与upsert was true, updateMany() inserted the document with a generated _id, the equality conditions from the filter, and the update modifiers.filter匹配的文档,并且upsert为true,updateMany()插入了带有生成的_id、来自filter和update修饰符的相等条件的文档。
Given a three member replica set, the following operation specifies a 给定一个三成员副本集,以下操作指定w of majority and wtimeout of 100:w为多数,wtimeout为100:
try { db.restaurant.updateMany( { "name" : "Pizza Rat's Pizzaria" }, { $inc: { "violations" : 3}, $set: { "Closed" : true } }, { w: "majority", wtimeout: 100 } ); } catch (e) { print(e); }
If the acknowledgement takes longer than the 如果确认时间超过wtimeout limit, the following exception is thrown:wtimeout限制,则会引发以下异常:
Changed in version 4.4.在版本4.4中更改。
WriteConcernError({
"code" : 64,
"errmsg" : "waiting for replication timed out",
"errInfo" : {
"wtimeout" : true,
"writeConcern" : {
"w" : "majority",
"wtimeout" : 100,
"provenance" : "getLastErrorDefaults"
}
}
})
The following table explains the possible values of 下表说明了errInfo.writeConcern.provenance:errInfo.writeConcernprovence的可能值:
| Provenance | |
|---|---|
clientSupplied | |
customDefault | setDefaultRWConcern.setDefaultRWConcern。
|
getLastErrorDefaults | settings.getLastErrorDefaults field.settings.getLastErrorDefaults字段。
|
implicitDefault |
Collation allows users to specify language-specific rules for string comparison, such as rules for lettercase and accent marks.允许用户为字符串比较指定特定于语言的规则,例如字母大小写和重音标记的规则。
A collection myColl has the following documents:myColl集合包含以下文档:
{ _id: 1, category: "café", status: "A" }
{ _id: 2, category: "cafe", status: "a" }
{ _id: 3, category: "cafE", status: "a" }
The following operation includes the collation option:以下操作包括collation选项:
db.myColl.updateMany(
{ category: "cafe" },
{ $set: { status: "Updated" } },
{ collation: { locale: "fr", strength: 1 } }
);
arrayFilters for an Array Update OperationsarrayFiltersStarting in MongoDB 3.6, when updating an array field, you can specify 从MongoDB 3.6开始,在更新数组字段时,可以指定arrayFilters that determine which array elements to update.arrayFilters来确定要更新的数组元素。
arrayFilters CriteriaarrayFilters条件Create a collection 使用以下文档创建students with the following documents:students集合:
db.students.insertMany( [
{ "_id" : 1, "grades" : [ 95, 92, 90 ] },
{ "_id" : 2, "grades" : [ 98, 100, 102 ] },
{ "_id" : 3, "grades" : [ 95, 110, 100 ] }
] )
To update all elements that are greater than or equal to 要更新100 in the grades array, use the filtered positional operator $[<identifier>] with the arrayFilters option:grades数组中大于或等于100的所有元素,请将筛选后的位置运算符$[<identifier>]与arrayFilters选项一起使用:
db.students.updateMany(
{ grades: { $gte: 100 } },
{ $set: { "grades.$[element]" : 100 } },
{ arrayFilters: [ { "element": { $gte: 100 } } ] }
)
After the operation, the collection contains the following documents:操作后,集合包含以下文档:
{ "_id" : 1, "grades" : [ 95, 92, 90 ] }
{ "_id" : 2, "grades" : [ 98, 100, 100 ] }
{ "_id" : 3, "grades" : [ 95, 100, 100 ] }
Create a collection 使用以下文档创建一个集合students2 with the following documents:students2:
db.students2.insertMany( [
{
"_id" : 1,
"grades" : [
{ "grade" : 80, "mean" : 75, "std" : 6 },
{ "grade" : 85, "mean" : 90, "std" : 4 },
{ "grade" : 85, "mean" : 85, "std" : 6 }
]
},
{
"_id" : 2,
"grades" : [
{ "grade" : 90, "mean" : 75, "std" : 6 },
{ "grade" : 87, "mean" : 90, "std" : 3 },
{ "grade" : 85, "mean" : 85, "std" : 4 }
]
}
] )
To modify the value of the 要修改mean field for all elements in the grades array where the grade is greater than or equal to 85, use the filtered positional operator $[<identifier>] with the arrayFilters:grade大于或等于85的grades数组中所有元素的mean字段的值,请将筛选后的位置运算符$[<identifier>]与arrayFilters一起使用:
db.students2.updateMany(
{ },
{ $set: { "grades.$[elem].mean" : 100 } },
{ arrayFilters: [ { "elem.grade": { $gte: 85 } } ] }
)
After the operation, the collection has the following documents:操作后,集合具有以下文档:
{
"_id" : 1,
"grades" : [
{ "grade" : 80, "mean" : 75, "std" : 6 },
{ "grade" : 85, "mean" : 100, "std" : 4 },
{ "grade" : 85, "mean" : 100, "std" : 6 }
]
}
{
"_id" : 2,
"grades" : [
{ "grade" : 90, "mean" : 100, "std" : 6 },
{ "grade" : 87, "mean" : 100, "std" : 3 },
{ "grade" : 85, "mean" : 100, "std" : 4 }
]
}
hint for Update OperationshintNew in version 4.2.1.在版本4.2.1中新增。
Create a sample 使用以下文档创建示例members collection with the following documents:members集合:
db.members.insertMany( [
{ "_id" : 1, "member" : "abc123", "status" : "P", "points" : 0, "misc1" : null, "misc2" : null },
{ "_id" : 2, "member" : "xyz123", "status" : "A", "points" : 60, "misc1" : "reminder: ping me at 100pts", "misc2" : "Some random comment" },
{ "_id" : 3, "member" : "lmn123", "status" : "P", "points" : 0, "misc1" : null, "misc2" : null },
{ "_id" : 4, "member" : "pqr123", "status" : "D", "points" : 20, "misc1" : "Deactivated", "misc2" : null },
{ "_id" : 5, "member" : "ijk123", "status" : "P", "points" : 0, "misc1" : null, "misc2" : null },
{ "_id" : 6, "member" : "cde123", "status" : "A", "points" : 86, "misc1" : "reminder: ping me at 100pts", "misc2" : "Some random comment" }
] )
Create the following indexes on the collection:在集合上创建以下索引:
db.members.createIndex( { status: 1 } )
db.members.createIndex( { points: 1 } )
The following update operation explicitly hints to use the index 以下更新操作明确提示使用索引{ status: 1 }:{ status: 1 }:
If you specify an index that does not exist, the operation errors.如果指定的索引不存在,则操作会出错。
db.members.updateMany(
{ "points": { $lte: 20 }, "status": "P" },
{ $set: { "misc1": "Need to activate" } },
{ hint: { status: 1 } }
)
The update command returns the following:update命令返回以下内容:
{ "acknowledged" : true, "matchedCount" : 3, "modifiedCount" : 3 }
To view the indexes used, you can use the 要查看使用的索引,可以使用$indexStats pipeline:$indexStats管道:
db.members.aggregate( [ { $indexStats: { } }, { $sort: { name: 1 } } ] )