On this page本页内容
Changed in version 5.0.在版本5.0中更改。
Returns the average value of the numeric values. 返回数值的平均值。$avg
ignores non-numeric values.忽略非数值。
$avg
is available in these stages:在以下阶段可用:
$addFields
$bucket
$bucketAuto
$group
$match
$expr
expression$expr
表达式的阶段$project
$replaceRoot
$replaceWith
$set
$setWindowFields
In MongoDB 3.2 and earlier, 在MongoDB 3.2及更早版本中,$avg
is available in the $group
stage only.$avg
仅在$group
阶段可用。
When used in the 在$bucket
, $bucketAuto
, $group
, and $setWindowFields
stages, $avg
has this syntax:$bucket
、$bucketAuto
、$group
和$setWindowFields
阶段中使用时,$avg
具有以下语法:
{ $avg: <expression> }
When used in other supported stages, 当在其他支持的阶段中使用时,$avg
has one of two syntaxes:$avg
有两种语法之一:
$avg
has one specified expression as its operand:具有一个指定表达式作为其操作数:
{ $avg: <expression> }
$avg
has a list of specified expressions as its operand:具有指定表达式列表作为其操作数:
{ $avg: [ <expression1>, <expression2> ... ] }
For more information on expressions, see Expressions.有关表达式的详细信息,请参阅表达式。
$avg
ignores non-numeric values, including missing values. 忽略非数值,包括丢失的值。If all of the operands for the average are non-numeric, 如果平均值的所有操作数都是非数字的,$avg
returns null
since the average of zero values is undefined.$avg
返回null
,因为零值的平均值未定义。
In the 在$group
stage, if the expression resolves to an array, $avg
treats the operand as a non-numerical value.$group
阶段,如果表达式解析为数组,$avg
将操作数视为非数值。
In the other supported stages:在其他支持阶段:
$avg
traverses into the array to operate on the numerical elements of the array to return a single value.$avg
遍历数组以对数组中的数字元素进行操作以返回单个值。$avg
does not traverse into the array but instead treats the array as a non-numerical value.$avg
不会遍历数组,而是将数组视为非数值。$group
Stage$group
阶段中使用Consider a 考虑具有以下文档的sales
collection with the following documents:sales
集合:
{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-01-01T08:00:00Z") } { "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-02-03T09:00:00Z") } { "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-03T09:05:00Z") } { "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-02-15T08:00:00Z") } { "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T09:12:00Z") }
Grouping the documents by the 按照item
field, the following operation uses the $avg
accumulator to compute the average amount and average quantity for each grouping.item
字段对文档进行分组,以下操作使用$avg
累加器计算每个分组的平均金额和平均数量。
db.sales.aggregate( [ { $group: { _id: "$item", avgAmount: { $avg: { $multiply: [ "$price", "$quantity" ] } }, avgQuantity: { $avg: "$quantity" } } } ] )
The operation returns the following results:该操作返回以下结果:
{ "_id" : "xyz", "avgAmount" : 37.5, "avgQuantity" : 7.5 } { "_id" : "jkl", "avgAmount" : 20, "avgQuantity" : 1 } { "_id" : "abc", "avgAmount" : 60, "avgQuantity" : 6 }
$project
Stage$project
阶段使用A collection students
contains the following documents:students
集合包含以下文件:
{ "_id": 1, "quizzes": [ 10, 6, 7 ], "labs": [ 5, 8 ], "final": 80, "midterm": 75 } { "_id": 2, "quizzes": [ 9, 10 ], "labs": [ 8, 8 ], "final": 95, "midterm": 80 } { "_id": 3, "quizzes": [ 4, 5, 5 ], "labs": [ 6, 5 ], "final": 78, "midterm": 70 }
The following example uses the 以下示例使用$avg
in the $project
stage to calculate the average quiz scores, the average lab scores, and the average of the final and the midterm:$project
阶段的$avg
计算平均测验分数、平均实验室分数以及期末和期中考试的平均值:
db.students.aggregate([ { $project: { quizAvg: { $avg: "$quizzes"}, labAvg: { $avg: "$labs" }, examAvg: { $avg: [ "$final", "$midterm" ] } } } ])
The operation results in the following documents:该操作产生以下文件:
{ "_id" : 1, "quizAvg" : 7.666666666666667, "labAvg" : 6.5, "examAvg" : 77.5 } { "_id" : 2, "quizAvg" : 9.5, "labAvg" : 8, "examAvg" : 87.5 } { "_id" : 3, "quizAvg" : 4.666666666666667, "labAvg" : 5.5, "examAvg" : 74 }
$setWindowFields
Stage$setWindowFields
阶段中使用New in version 5.0.在版本5.0中新增。
Create a 创建包含加利福尼亚州(CA)和华盛顿州(WA)蛋糕销售的cakeSales
collection that contains cake sales in the states of California (CA
) and Washington (WA
):cakeSales
系列:
db.cakeSales.insertMany( [ { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"), state: "CA", price: 13, quantity: 120 }, { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"), state: "WA", price: 14, quantity: 140 }, { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"), state: "CA", price: 12, quantity: 145 }, { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"), state: "WA", price: 13, quantity: 104 }, { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"), state: "CA", price: 41, quantity: 162 }, { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"), state: "WA", price: 43, quantity: 134 } ] )
This example uses 本示例使用$avg
in the $setWindowFields
stage to output the moving average for the cake sales quantity
for each state
:$setWindowFields
阶段中的$avg
输出每个state
的蛋糕销售quantity
的移动平均值:
db.cakeSales.aggregate( [ { $setWindowFields: { partitionBy: "$state", sortBy: { orderDate: 1 }, output: { averageQuantityForState: { $avg: "$quantity", window: { documents: [ "unbounded", "current" ] } } } } } ] )
In the example:在该示例中:
partitionBy: "$state"
state
. state
对集合中的文档进行分区。CA
and WA
.CA
和WA
的分区。sortBy: { orderDate: 1 }
orderDate
in ascending order (1
), so the earliest orderDate
is first.orderDate
按升序(1
)对每个分区中的文档进行排序,因此最早的OrderDate
是第一个。output使用output
sets the averageQuantityForState
field to the moving average quantity
using $avg
for the documents in a documents window.$avg
为文档窗口中的文档将averageQuantityForState
字段设置为移动平均quantity
。
The window contains documents between an 该窗口包含的文档位于unbounded
lower limit and the current
document in the output. unbounded
下限和输出中的current
文档之间。This means 这意味着$avg
returns the moving average quantity
for the documents between the beginning of the partition and the current document.$avg
返回分区开始和当前文档之间文档的移动平均quantity
。
In this output, the moving average 在该输出中,quantity
for CA
and WA
is shown in the averageQuantityForState
field:CA
和WA
的移动平均quantity
显示在averageQuantityForState
字段中:
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"), "state" : "CA", "price" : 41, "quantity" : 162, "averageQuantityForState" : 162 } { "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"), "state" : "CA", "price" : 13, "quantity" : 120, "averageQuantityForState" : 141 } { "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"), "state" : "CA", "price" : 12, "quantity" : 145, "averageQuantityForState" : 142.33333333333334 } { "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"), "state" : "WA", "price" : 43, "quantity" : 134, "averageQuantityForState" : 134 } { "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"), "state" : "WA", "price" : 13, "quantity" : 104, "averageQuantityForState" : 119 } { "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"), "state" : "WA", "price" : 14, "quantity" : 140, "averageQuantityForState" : 126 }