On this page本页内容
$bucketAuto
Categorizes incoming documents into a specific number of groups, called buckets, based on a specified expression. 根据指定的表达式,将传入文档分类为特定数量的组,称为bucket。Bucket boundaries are automatically determined in an attempt to evenly distribute the documents into the specified number of buckets.桶边界自动确定,以尝试将文档均匀分布到指定数量的桶中。
Each bucket is represented as a document in the output. 每个bucket在输出中表示为一个文档。The document for each bucket contains:每个桶的文档包含:
An 指定桶边界的_id
object that specifies the bounds of the bucket._id.min
对象。
_id.min
field specifies the inclusive lower bound for the bucket._id
min字段指定桶的包含下限。_id.max
field specifies the upper bound for the bucket. _id.max
字段指定桶的上限。count
field that contains the number of documents in the bucket. count
字段。count
field is included by default when the output
document is not specified.output
文档时,默认情况下包括count
字段。The $bucketAuto
stage has the following form:$bucketAuto
阶段具有以下形式:
{ $bucketAuto: { groupBy: <expression>, buckets: <number>, output: { <output1>: { <$accumulator expression> }, ... } granularity: <string> } }
groupBy | expression | $ and enclose it in quotes.$ ,并将其括在引号中。
| ||||
buckets | integer | |||||
output | document |
<outputfield1>: { <accumulator>: <expression1> }, ...
output: { <outputfield1>: { <accumulator>: <expression1> }, ... count: { $sum: 1 } } | ||||
granularity | string |
|
$bucketAuto
The $bucketAuto
stage has a limit of 100 megabytes of RAM. $bucketAuto
阶段的RAM限制为100兆字节。By default, if the stage exceeds this limit, 默认情况下,如果阶段超过此限制,$bucketAuto
returns an error. $bucketAuto
将返回一个错误。To allow more space for stage processing, use the allowDiskUse option to enable aggregation pipeline stages to write data to temporary files.要为阶段处理留出更多空间,请使用allowDiskUse
选项启用聚合管道阶段将数据写入临时文件。
There may be less than the specified number of buckets if:如果出现以下情况,则可能少于指定的桶数:
groupBy
expression is less than the specified number of buckets
.groupBy
表达式的唯一值数小于指定的buckets
的数量。granularity
has fewer intervals than the number of buckets
.granularity
的间隔小于buckets
的数量。granularity
is not fine enough to evenly distribute documents into the specified number of buckets
.granularity
不够精细,无法将文档均匀分布到指定数量的buckets
中。If the 如果groupBy
expression refers to an array or document, the values are arranged using the same ordering as in $sort
before determining the bucket boundaries.groupBy
表达式引用数组或文档,则在确定桶边界之前,使用与$sort
相同的顺序排列值。
The even distribution of documents across buckets depends on the cardinality, or the number of unique values, of the 文档跨存储桶的均匀分布取决于groupBy
field. groupBy
字段的基数或唯一值的数量。If the cardinality is not high enough, the $bucketAuto stage may not evenly distribute the results across buckets.如果基数不够高,则$bucketAuto
阶段可能无法将结果均匀分布到各个桶。
The $bucketAuto
accepts an optional granularity
parameter which ensures that the boundaries of all buckets adhere to a specified preferred number series. $bucketAuto
接受一个可选的granularity
参数,该参数确保所有桶的边界符合指定的首选数字序列。Using a preferred number series provides more control on where the bucket boundaries are set among the range of values in the 使用优选的数字序列提供了对在groupBy
expression. groupBy
表达式中的值范围中设置桶边界的更多控制。They may also be used to help logarithmically and evenly set bucket boundaries when the range of the 当groupBy
expression scales exponentially.groupBy
表达式的范围按指数缩放时,它们还可用于帮助对数和均匀地设置桶边界。
The Renard number series are sets of numbers derived by taking either the 5 th, 10 th, 20 th, 40 th, or 80 th root of 10, then including various powers of the root that equate to values between 1.0 to 10.0 (10.3 in the case of 雷诺数系列是通过取10的第5、第10、第20、第40或第80个根,然后包括等于1.0到10.0之间的值(R80情况下为10.3)的根的各种幂得出的数集。R80
).
Set 将granularity
to R5
, R10
, R20
, R40
, or R80
to restrict bucket boundaries to values in the series. granularity
设置为R5
、R10
、R20
、R40
或R80
,以将桶边界限制为系列中的值。The values of the series are multiplied by a power of 10 when the 当groupBy
values are outside of the 1.0 to 10.0 (10.3 for R80
) range.groupBy
值在1.0到10.0(R80
为10.3)范围之外时,该系列的值乘以10的幂。
The R5
series is based off of the fifth root of 10, which is 1.58, and includes various powers of this root (rounded) until 10 is reached. R5
系列基于10的五次方根,即1.58,并包括该方根的各种幂(四舍五入),直到达到10。The R5
series is derived as follows:R5
系列推导如下:
The same approach is applied to the other Renard series to offer finer granularity, i.e., more intervals between 1.0 and 10.0 (10.3 for 同样的方法适用于其他Renard系列,以提供更精细的粒度,即1.0和10.0之间的更多间隔(R80
).R80
为10.3)。
The E number series are similar to the Renard series in that they subdivide the interval from 1.0 to 10.0 by the 6 th, 12 th, 24 th, 48 th, 96 th, or 192 nd root of ten with a particular relative error.E数列与Renard数列相似,因为它们将1.0到10.0之间的间隔细分为10的第6、12、24、48、96或192次方根,并具有特定的相对误差。
Set 将granularity
to E6
, E12
, E24
, E48
, E96
, or E192
to restrict bucket boundaries to values in the series. granularity
设置为E6
、E12
、E24
、E48
、E96
或E192
,以将桶边界限制为系列中的值。The values of the series are multiplied by a power of 10 when the 当groupBy
values are outside of the 1.0 to 10.0 range. groupBy
值在1.0到10.0范围之外时,序列的值乘以10的幂。To learn more about the E-series and their respective relative errors, see preferred number series.要了解有关E系列及其各自相对误差的更多信息,请参阅首选数字系列。
The 1-2-5
series behaves like a three-value Renard series, if such a series existed.1-2-5
系列的行为类似于三值Renard系列(如果存在此类系列)。
Set 将granularity
to 1-2-5
to restrict bucket boundaries to various powers of the third root of 10, rounded to one significant digit.granularity
设置为1-2-5
,将桶边界限制为10的第三个根的各种幂,四舍五入到一个有效数字。
The following values are part of the 以下值是1-2-5
series: 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, and so on...1-2-5
系列的一部分:0.1、0.2、0.5、1、2、5、10、20、50、100、200、500、1000等。。。
Set 将granularity
to POWERSOF2
to restrict bucket boundaries to numbers that are a power of two.granularity
设置为POWERSOF2
,将桶边界限制为2的幂。
The following numbers adhere to the power of two Series:以下数字符合两个系列的幂:
A common implementation is how various computer components, like memory, often adhere to the 一种常见的实现方式是,各种计算机组件(如内存)通常遵循2的幂组首选数字:POWERSOF2
set of preferred numbers:
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, and so on....1、2、4、8、16、32、64、128、256、512、1024、2048……
The following operation demonstrates how specifying different values for 以下操作演示了为granularity
affects how $bucketAuto
determines bucket boundaries. granularity
指定不同的值如何影响$bucketAuto
如何确定桶边界。A collection of things
have an _id
numbered from 1 to 100:things
集合具有编号为1到100的_id
:
{ _id: 1 } { _id: 2 } ... { _id: 100 }
Different values for granularity
are substituted into the following operation:granularity
的不同值被替换为以下操作:
db.things.aggregate( [ { $bucketAuto: { groupBy: "$_id", buckets: 5, granularity: <granularity> } } ] )
The results in the following table demonstrate how different values for 下表中的结果演示了granularity
yield different bucket boundaries:granularity
的不同值如何产生不同的桶边界:
Granularity | Results | Notes |
---|---|---|
No granularity | { "_id" : { "min" : 0, "max" : 20 }, "count" : 20 }
{ "_id" : { "min" : 20, "max" : 40 }, "count" : 20 }
{ "_id" : { "min" : 40, "max" : 60 }, "count" : 20 }
{ "_id" : { "min" : 60, "max" : 80 }, "count" : 20 }
{ "_id" : { "min" : 80, "max" : 99 }, "count" : 20 }
| |
R20 | { "_id" : { "min" : 0, "max" : 20 }, "count" : 20 }
{ "_id" : { "min" : 20, "max" : 40 }, "count" : 20 }
{ "_id" : { "min" : 40, "max" : 63 }, "count" : 23 }
{ "_id" : { "min" : 63, "max" : 90 }, "count" : 27 }
{ "_id" : { "min" : 90, "max" : 100 }, "count" : 10 }
| |
E24 | { "_id" : { "min" : 0, "max" : 20 }, "count" : 20 }
{ "_id" : { "min" : 20, "max" : 43 }, "count" : 23 }
{ "_id" : { "min" : 43, "max" : 68 }, "count" : 25 }
{ "_id" : { "min" : 68, "max" : 91 }, "count" : 23 }
{ "_id" : { "min" : 91, "max" : 100 }, "count" : 9 }
| |
1-2-5 | { "_id" : { "min" : 0, "max" : 20 }, "count" : 20 }
{ "_id" : { "min" : 20, "max" : 50 }, "count" : 30 }
{ "_id" : { "min" : 50, "max" : 100 }, "count" : 50 }
| |
POWERSOF2 | { "_id" : { "min" : 0, "max" : 32 }, "count" : 32 }
{ "_id" : { "min" : 32, "max" : 64 }, "count" : 32 }
{ "_id" : { "min" : 64, "max" : 128 }, "count" : 36 }
|
Consider a collection 考虑一个artwork
with the following documents:artwork
集合包含以下文档:
{ "_id" : 1, "title" : "The Pillars of Society", "artist" : "Grosz", "year" : 1926, "price" : NumberDecimal("199.99"), "dimensions" : { "height" : 39, "width" : 21, "units" : "in" } } { "_id" : 2, "title" : "Melancholy III", "artist" : "Munch", "year" : 1902, "price" : NumberDecimal("280.00"), "dimensions" : { "height" : 49, "width" : 32, "units" : "in" } } { "_id" : 3, "title" : "Dancer", "artist" : "Miro", "year" : 1925, "price" : NumberDecimal("76.04"), "dimensions" : { "height" : 25, "width" : 20, "units" : "in" } } { "_id" : 4, "title" : "The Great Wave off Kanagawa", "artist" : "Hokusai", "price" : NumberDecimal("167.30"), "dimensions" : { "height" : 24, "width" : 36, "units" : "in" } } { "_id" : 5, "title" : "The Persistence of Memory", "artist" : "Dali", "year" : 1931, "price" : NumberDecimal("483.00"), "dimensions" : { "height" : 20, "width" : 24, "units" : "in" } } { "_id" : 6, "title" : "Composition VII", "artist" : "Kandinsky", "year" : 1913, "price" : NumberDecimal("385.00"), "dimensions" : { "height" : 30, "width" : 46, "units" : "in" } } { "_id" : 7, "title" : "The Scream", "artist" : "Munch", "price" : NumberDecimal("159.00"), "dimensions" : { "height" : 24, "width" : 18, "units" : "in" } } { "_id" : 8, "title" : "Blue Flower", "artist" : "O'Keefe", "year" : 1918, "price" : NumberDecimal("118.42"), "dimensions" : { "height" : 24, "width" : 20, "units" : "in" } }
In the following operation, input documents are grouped into four buckets according to the values in the 在以下操作中,输入单据根据price
field:price
字段中的值分为四个桶:
db.artwork.aggregate( [ { $bucketAuto: { groupBy: "$price", buckets: 4 } } ] )
The operation returns the following documents:操作将返回以下文档:
{ "_id" : { "min" : NumberDecimal("76.04"), "max" : NumberDecimal("159.00") }, "count" : 2 } { "_id" : { "min" : NumberDecimal("159.00"), "max" : NumberDecimal("199.99") }, "count" : 2 } { "_id" : { "min" : NumberDecimal("199.99"), "max" : NumberDecimal("385.00") }, "count" : 2 } { "_id" : { "min" : NumberDecimal("385.00"), "max" : NumberDecimal("483.00") }, "count" : 2 }
The $bucketAuto
stage can be used within the $facet
stage to process multiple aggregation pipelines on the same set of input documents from artwork
.$bucketAuto
阶段可以在$facet
阶段中使用,以处理来自artwork
的同一组输入文档上的多个聚合管道。
The following aggregation pipeline groups the documents from the 以下聚合管道根据artwork
collection into buckets based on price
, year
, and the calculated area
:price
、year
和计算area
将artwork
集合中的文档分组到桶中:
db.artwork.aggregate( [ { $facet: { "price": [ { $bucketAuto: { groupBy: "$price", buckets: 4 } } ], "year": [ { $bucketAuto: { groupBy: "$year", buckets: 3, output: { "count": { $sum: 1 }, "years": { $push: "$year" } } } } ], "area": [ { $bucketAuto: { groupBy: { $multiply: [ "$dimensions.height", "$dimensions.width" ] }, buckets: 4, output: { "count": { $sum: 1 }, "titles": { $push: "$title" } } } } ] } } ] )
The operation returns the following document:运算返回以下文档:
{ "area" : [ { "_id" : { "min" : 432, "max" : 500 }, "count" : 3, "titles" : [ "The Scream", "The Persistence of Memory", "Blue Flower" ] }, { "_id" : { "min" : 500, "max" : 864 }, "count" : 2, "titles" : [ "Dancer", "The Pillars of Society" ] }, { "_id" : { "min" : 864, "max" : 1568 }, "count" : 2, "titles" : [ "The Great Wave off Kanagawa", "Composition VII" ] }, { "_id" : { "min" : 1568, "max" : 1568 }, "count" : 1, "titles" : [ "Melancholy III" ] } ], "price" : [ { "_id" : { "min" : NumberDecimal("76.04"), "max" : NumberDecimal("159.00") }, "count" : 2 }, { "_id" : { "min" : NumberDecimal("159.00"), "max" : NumberDecimal("199.99") }, "count" : 2 }, { "_id" : { "min" : NumberDecimal("199.99"), "max" : NumberDecimal("385.00") }, "count" : 2 }, { "_id" : { "min" : NumberDecimal("385.00"), "max" : NumberDecimal("483.00") }, "count" : 2 } ], "year" : [ { "_id" : { "min" : null, "max" : 1913 }, "count" : 3, "years" : [ 1902 ] }, { "_id" : { "min" : 1913, "max" : 1926 }, "count" : 3, "years" : [ 1913, 1918, 1925 ] }, { "_id" : { "min" : 1926, "max" : 1931 }, "count" : 2, "years" : [ 1926, 1931 ] } ] }