On this page本页内容
Each time 每次调用$rand
is called it will return a floating point value that has up to 17 digits after the decimal point. $rand
时,它将返回一个浮点值,该值在小数点后最多有17位数字。Trailing 0s are dropped so the actual number of digits may vary.尾随0被删除,因此实际位数可能会有所不同。
This example models charitable donations. 这个例子模拟了慈善捐款。The collection starts with a list of donors.集合从捐赠者名单开始。
db.donors.insertMany( [ { donorId: 1000, amount: 0, frequency: 1 }, { donorId: 1001, amount: 0, frequency: 2 }, { donorId: 1002, amount: 0, frequency: 1 }, { donorId: 1003, amount: 0, frequency: 2 }, { donorId: 1004, amount: 0, frequency: 1 } ] )
We use an aggregation pipeline to update each document with a random donation amount.我们使用聚合管道以随机捐赠金额更新每个文档。
db.donors.aggregate( [ { $set: { amount: { $multiply: [ { $rand: {} }, 100 ] } } }, { $set: { amount: { $floor: "$amount" } } }, { $merge: "donors" } ] )
The first 第一个$set
stage updates the amount
field. $set
阶段更新amount
字段。An initial value between 0 and 1 is generated using 使用$rand
. $rand
生成0到1之间的初始值。Then 然后$multiply
scales it upward 100 times.$multiply
将其向上扩展100倍。
The 第二个$floor
operator in the second $set
stage removes the decimal portion from the amount
to leave an integer value.$set
阶段中的$floor
运算符从amount
中删除小数部分,以保留一个整数值。
Finally, 最后,$merge
writes the random value created in the previous steps to the amount
field, updating it for each document in the donors
collection.$merge
将前面步骤中创建的随机值写入amount
字段,并为捐助者集合中的每个文档更新它。
You can view the results with a projection stage:您可以使用投影阶段查看结果:
db.donors.aggregate( [ { $project: {_id: 0, donorId: 1, amount: 1 } } ] )
The projection shows the scaled amounts are now random values in the range from 0 to 99.投影显示,缩放的数量现在是0到99范围内的随机值。
{ "donorId" : 1000, "amount" : 27 } { "donorId" : 1001, "amount" : 10 } { "donorId" : 1002, "amount" : 88 } { "donorId" : 1003, "amount" : 73 } { "donorId" : 1004, "amount" : 5 }
You can use 您可以在聚合管道中使用$rand
in an aggregation pipeline to select random documents from a collection. $rand
从集合中随机选择文档。Consider a collection of voter records:考虑集合选民记录:
db.voters.insertMany( [ { name: "Archibald", voterId: 4321, district: 3, registered: true }, { name: "Beckham", voterId: 4331, district: 3, registered: true }, { name: "Carolin", voterId: 5321, district: 4, registered: true }, { name: "Debarge", voterId: 4343, district: 3, registered: false }, { name: "Eckhard", voterId: 4161, district: 3, registered: false }, { name: "Faberge", voterId: 4300, district: 1, registered: true }, { name: "Grimwald", voterId: 4111, district: 3, registered: true }, { name: "Humphrey", voterId: 2021, district: 3, registered: true }, { name: "Idelfon", voterId: 1021, district: 4, registered: true }, { name: "Justo", voterId: 9891, district: 3, registered: false } ] )
Imagine you want to select about half of the voters in District 3 to do some polling.想象一下,你想选择第三区大约一半的选民进行投票。
db.voters.aggregate( [ { $match: { district: 3 } }, { $match: { $expr: { $lt: [0.5, {$rand: {} } ] } } }, { $project: { _id: 0, name: 1, registered: 1 } } ] )
The first pipeline stage matches all documents where the voter is from district 3.第一个管道阶段匹配选民来自3区的所有文件。
The second 第二个$match
stage uses $rand
in a match expression to further refine the selection. $match
阶段在匹配表达式中使用$rand
进一步优化选择。For each document, 对于每个文档,$rand
generates a value between 0 and 1. $rand
生成一个介于0和1之间的值。The threshold of 在小于(0.5
in the less than ($lt)
comparison means that $expr
will be true for about half the documents.$lt
)的比较中,阈值为0.5
意味着$expr
将适用于大约一半的文档。
In the 在$project
stage the selected documents are filtered to return the name
and registered
fields. $project
阶段,将筛选所选文档以返回name
和registered
字段。There are 7 voters in District 3, running the code selects about half of them.第三区有7名选民,运行该代码可以选择其中大约一半的选民。
{ "name" : "Archibald", "registered" : true } { "name" : "Debarge", "registered" : false } { "name" : "Humphrey", "registered" : true }