On this page本页内容
Changed in version 5.0.在版本5.0中更改。
Calculates the sample standard deviation of the input values. 计算输入值的样本标准偏差。Use if the values encompass a sample of a population of data from which to generalize about the population. 如果这些值包含要从中概括总体的数据样本,则使用此选项。$stdDevSamp ignores non-numeric values.忽略非数值。
If the values represent the entire population of data or you do not wish to generalize about a larger population, use 如果这些值代表整个数据总体,或者您不希望概括更大的总体,请改用$stdDevPop instead.$stdDevPop。
$stdDevSamp is available in these stages:可在以下阶段使用:
$addFields$group$match stage that includes an $expr expression$expr表达式的$match阶段$project$replaceRoot$replaceWith$set$setWindowFieldsWhen used in the 在$bucket, $bucketAuto, $group, and $setWindowFields stages, $stdDevSamp has this syntax:$bucket、$bucketAuto、$group和$setWindowFields阶段中使用时,$stdDevSamp具有以下语法:
{ $stdDevSamp: <expression> }
When used in other supported stages, 在其他受支持的阶段中使用时,$stdDevSamp has one of two syntaxes:$stdDevSamp具有以下两种语法之一:
$stdDevSamp has one specified expression as its operand:将一个指定的表达式作为其操作数:
{ $stdDevSamp: <expression> }
$stdDevSamp has a list of specified expressions as its operand:具有指定表达式列表作为其操作数:
{ $stdDevSamp: [ <expression1>, <expression2> ... ] }
The argument for $stdDevSamp can be any expression as long as it resolves to an array.$stdDevSamp的参数可以是任何表达式,只要它解析为数组即可。
For more information on expressions, see Expressions.有关表达式的详细信息,请参阅表达式。
$stdDevSamp ignores non-numeric values. 忽略非数值。If all operands for a sum are non-numeric, 如果总和的所有操作数都是非数字的,$stdDevSamp returns null.$stdDevSamp将返回null。
If the sample consists of a single numeric value, 如果样本由单个数值组成,$stdDevSamp returns null.$stdDevSamp将返回null。
In the 在$group and $setWindowFields stages, if the expression resolves to an array, $stdDevSamp treats the operand as a non-numerical value.$group和$setWindowFields阶段中,如果表达式解析为数组,$stdDevSamp会将操作数视为非数值。
In the other supported stages:在其他受支持的阶段中:
$stdDevSamp traverses into the array to operate on the numerical elements of the array to return a single value.$stdDevSamp将遍历数组,对数组的数字元素进行操作,以返回单个值。$stdDevSamp does not traverse into the array but instead treats the array as a non-numerical value.$stdDevSamp不会遍历数组,而是将数组视为非数值。Behavior with values in a $setWindowFields stage window:$setWindowFields阶段窗口中值的行为:
null values, and missing fields in a window.null值和缺少的字段。null.null。NaN value, returns null.NaN值,则返回null。Infinity values, returns null.Infinity值,则返回null。double value.double值。$group Stage$group阶段中使用A collection 集合users contains documents with the following fields:users包含具有以下字段的文档:
{_id: 0, username: "user0", age: 20}
{_id: 1, username: "user1", age: 42}
{_id: 2, username: "user2", age: 28}
...
To calculate the standard deviation of a sample of users, following aggregation operation first uses the 要计算用户样本的标准偏差,以下聚合操作首先使用$sample pipeline to sample 100 users, and then uses $stdDevSamp calculates the standard deviation for the sampled users.$sample管道对100个用户进行采样,然后使用$stdDevSamp计算采样用户的标准偏差。
db.users.aggregate(
[
{ $sample: { size: 100 } },
{ $group: { _id: null, ageStdDev: { $stdDevSamp: "$age" } } }
]
)
The operation returns a result like the following:该操作返回如下结果:
{ "_id" : null, "ageStdDev" : 7.811258386185771 }
$setWindowFields Stage$setWindowFields阶段中使用New in version 5.0.在版本5.0中新增。
Create a 创建包含加利福尼亚州(cakeSales collection that contains cake sales in the states of California (CA) and Washington (WA):CA)和华盛顿州(WA)蛋糕销售的cakeSales集合:
db.cakeSales.insertMany( [
{ _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"),
state: "CA", price: 13, quantity: 120 },
{ _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"),
state: "WA", price: 14, quantity: 140 },
{ _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"),
state: "CA", price: 12, quantity: 145 },
{ _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"),
state: "WA", price: 13, quantity: 104 },
{ _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"),
state: "CA", price: 41, quantity: 162 },
{ _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"),
state: "WA", price: 43, quantity: 134 }
] )
This example uses 本例使用$stdDevSamp in the $setWindowFields stage to output the sample standard deviation of the quantity values of the cake sales for each state:$setWindowFields阶段中的$stdDevSamp输出每个state的蛋糕销售quantity值的样本标准偏差:
db.cakeSales.aggregate( [
{
$setWindowFields: {
partitionBy: "$state",
sortBy: { orderDate: 1 },
output: {
stdDevSampQuantityForState: {
$stdDevSamp: "$quantity",
window: {
documents: [ "unbounded", "current" ]
}
}
}
}
}
] )
In the example:在示例中:
partitionBy: "$state" state. state对集合中的文档进行分区。CA and WA.CA和WA有分区。sortBy: { orderDate: 1 } orderDate in ascending order (1), so the earliest orderDate is first.orderDate以升序(1)对每个分区中的文档进行排序,因此最早的orderDate第一个。output sets the stdDevSampQuantityForState field to the sample standard deviation of the quantity values using $stdDevSamp that is run in a documents window.output使用在文档窗口中运行的$stdDevSamp将stdDevSampQuantityForState字段设置为quantity值的样本标准偏差。
The window contains documents between an 该窗口包含输出中处于unbounded lower limit and the current document in the output. unbounded下限和current文档之间的文档。This means 这意味着$stdDevSamp returns the sample standard deviation of the quantity values for the documents between the beginning of the partition and the current document.$stdDevSamp返回分区开始处和当前文档之间文档quantity值的标准偏差示例。
In this output, the sample standard deviation 在此输出中,quantity value for CA and WA is shown in the stdDevSampQuantityForState field:CA和WA的样本标准偏差quantity值显示在stdDevSampQuantityForState字段中:
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"),
"state" : "CA", "price" : 41, "quantity" : 162, "stdDevSampQuantityForState" : null }
{ "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"),
"state" : "CA", "price" : 13, "quantity" : 120, "stdDevSampQuantityForState" : 29.698484809834994 }
{ "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"),
"state" : "CA", "price" : 12, "quantity" : 145, "stdDevSampQuantityForState" : 21.1266025033211 }
{ "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"),
"state" : "WA", "price" : 43, "quantity" : 134, "stdDevSampQuantityForState" : null }
{ "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"),
"state" : "WA", "price" : 13, "quantity" : 104, "stdDevSampQuantityForState" : 21.213203435596427 }
{ "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"),
"state" : "WA", "price" : 14, "quantity" : 140, "stdDevSampQuantityForState" : 19.28730152198591 }