On this page本页内容
Changed in version 5.0.在版本5.0中更改。
Calculates and returns the collective sum of numeric values. 计算并返回数值的集合和。$sum
ignores non-numeric values.忽略非数值。
$sum
is available in these stages:可在以下阶段使用:
$addFields
$bucket
$bucketAuto
$group
$match
stage that includes an $expr
expression$expr
表达式的$match
阶段$project
$replaceRoot
$replaceWith
$set
$setWindowFields
In MongoDB 3.2 and earlier, 在MongoDB 3.2及更早版本中,$sum
is available in the $group
stage only.$sum
仅在$group
阶段可用。
When used in the 在$bucket
, $bucketAuto
, $group
, and $setWindowFields
stages, $sum
has this syntax:$bucket
、$bucketAuto
、$group
和$setWindowFields
阶段中使用时,$sum
具有以下语法:
{ $sum: <expression> }
When used in other supported stages, 在其他受支持的阶段中使用时,$sum
has one of two syntaxes:$sum
具有以下两种语法之一:
$sum
has one specified expression as its operand:将一个指定的表达式作为其操作数:
{ $sum: <expression> }
$sum
has a list of specified expressions as its operand:具有指定表达式列表作为其操作数:
{ $sum: [ <expression1>, <expression2> ... ] }
For more information on expressions, see Expressions.有关表达式的详细信息,请参阅表达式。
The result will have the same type as the input except when it cannot be represented accurately in that type. 结果将与输入具有相同的类型,除非无法在该类型中准确表示。In these cases:在这些情况下:
If used on a field that contains both numeric and non-numeric values, 如果在同时包含数值和非数值的字段上使用,$sum
ignores the non-numeric values and returns the sum of the numeric values.$sum
将忽略非数值并返回数值的总和。
If used on a field that does not exist in any document in the collection, 如果用于集合中任何文档中都不存在的字段,$sum
returns 0
for that field.$sum
将为该字段返回0。
If all operands are non-numeric, 如果所有操作数都是非数字的,则$sum
returns 0
.$sum
返回0
。
In the 在$group
stage, if the expression resolves to an array, $sum
treats the operand as a non-numerical value.$group
阶段,如果表达式解析为数组,$sum
会将操作数视为非数值。
In the other supported stages:在其他受支持的阶段中:
$sum
traverses into the array to operate on the numerical elements of the array to return a single value.$sum
将遍历数组,对数组的数字元素进行运算,以返回单个值。$sum
does not traverse into the array but instead treats the array as a non-numerical value.$sum
不会遍历数组,而是将数组视为非数值。$group
Stage$group
阶段中使用Consider a 考虑使用以下文档的sales
collection with the following documents:sales
集合:
{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-01-01T08:00:00Z") } { "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-02-03T09:00:00Z") } { "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-03T09:05:00Z") } { "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-02-15T08:00:00Z") } { "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T09:05:00Z") }
Grouping the documents by the day and the year of the 以下操作按date
field, the following operation uses the $sum
accumulator to compute the total amount and the count for each group of documents.date
字段的日期和年份对文档进行分组,使用$sum
累加器计算每组文档的总金额和计数。
db.sales.aggregate( [ { $group: { _id: { day: { $dayOfYear: "$date"}, year: { $year: "$date" } }, totalAmount: { $sum: { $multiply: [ "$price", "$quantity" ] } }, count: { $sum: 1 } } } ] )
The operation returns the following results:该操作返回以下结果:
{ "_id" : { "day" : 46, "year" : 2014 }, "totalAmount" : 150, "count" : 2 } { "_id" : { "day" : 34, "year" : 2014 }, "totalAmount" : 45, "count" : 2 } { "_id" : { "day" : 1, "year" : 2014 }, "totalAmount" : 20, "count" : 1 }
Using 对不存在的字段使用$sum
on a non-existent field returns a value of 0
. $sum
将返回值0
。The following operation attempts to 以下操作尝试对$sum
on qty
:qty
执行$sum
操作:
db.sales.aggregate( [ { $group: { _id: { day: { $dayOfYear: "$date"}, year: { $year: "$date" } }, totalAmount: { $sum: "$qty" }, count: { $sum: 1 } } } ] )
The operation returns:操作返回:
{ "_id" : { "day" : 46, "year" : 2014 }, "totalAmount" : 0, "count" : 2 } { "_id" : { "day" : 34, "year" : 2014 }, "totalAmount" : 0, "count" : 2 } { "_id" : { "day" : 1, "year" : 2014 }, "totalAmount" : 0, "count" : 1 }
The $count
aggregation accumulator can be used in place of { $sum : 1 }
in the $group
stage.$count
聚合累加器可以代替$group
阶段中的{ $sum : 1 }
。
$project
Stage$project
阶段中使用A collection 集合students
contains the following documents:students
包含以下文档:
{ "_id": 1, "quizzes": [ 10, 6, 7 ], "labs": [ 5, 8 ], "final": 80, "midterm": 75 } { "_id": 2, "quizzes": [ 9, 10 ], "labs": [ 8, 8 ], "final": 95, "midterm": 80 } { "_id": 3, "quizzes": [ 4, 5, 5 ], "labs": [ 6, 5 ], "final": 78, "midterm": 70 }
The following example uses the 下面的示例使用$sum
in the $project
stage to calculate the total quiz scores, the total lab scores, and the total of the final and the midterm:$project
阶段中的$sum
来计算测验总分、实验室总分以及期末和期中考试总分:
db.students.aggregate([ { $project: { quizTotal: { $sum: "$quizzes"}, labTotal: { $sum: "$labs" }, examTotal: { $sum: [ "$final", "$midterm" ] } } } ])
The operation results in the following documents:该操作产生以下文档:
{ "_id" : 1, "quizTotal" : 23, "labTotal" : 13, "examTotal" : 155 } { "_id" : 2, "quizTotal" : 19, "labTotal" : 16, "examTotal" : 175 } { "_id" : 3, "quizTotal" : 14, "labTotal" : 11, "examTotal" : 148 }
$setWindowFields
Stage$setWindowFields
阶段中使用New in version 5.0.在版本5.0中新增。
Create a 创建包含加利福尼亚州(cakeSales
collection that contains cake sales in the states of California (CA
) and Washington (WA
):CA
)和华盛顿州(WA
)蛋糕销售的cakeSales
集合:
db.cakeSales.insertMany( [ { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"), state: "CA", price: 13, quantity: 120 }, { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"), state: "WA", price: 14, quantity: 140 }, { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"), state: "CA", price: 12, quantity: 145 }, { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"), state: "WA", price: 13, quantity: 104 }, { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"), state: "CA", price: 41, quantity: 162 }, { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"), state: "WA", price: 43, quantity: 134 } ] )
This example uses 本例使用$sum
in the $setWindowFields
stage to output the sum of the quantity
of cakes sold in each state
:$setWindowFields
阶段中的$sum
输出每个state
销售的蛋糕quantity
的总和:
db.cakeSales.aggregate( [ { $setWindowFields: { partitionBy: "$state", sortBy: { orderDate: 1 }, output: { sumQuantityForState: { $sum: "$quantity", window: { documents: [ "unbounded", "current" ] } } } } } ] )
In the example:在示例中:
partitionBy: "$state"
state
. state
对集合中的文档进行分区。CA
and WA
.CA
和WA
有分区。sortBy: { orderDate: 1 }
orderDate
in ascending order (1
), so the earliest orderDate
is first.orderDate
以升序(1
)对每个分区中的文档进行排序,因此最早的orderDate
第一个。output
sets the sumQuantityForState
field to the sum of the quantity
values using $sum
that is run in a documents window.output
使用在文档窗口中运行的$sum
将sumQuantityForState
字段设置为quantity
值的总和。
The window contains documents between an 该窗口包含输出中处于unbounded
lower limit and the current
document in the output. unbounded
下限和current
文档之间的文档。This means 这意味着$sum
returns the sum of the quantity
values for the documents between the beginning of the partition and the current document.$sum
返回分区开始处和当前文档之间的文档quantity
值的总和。
In this output, the sum of the 在此输出中,quantity
values for CA
and WA
is shown in the sumQuantityForState
field:CA
和WA
的quantity
值之和显示在sumQuantityForState
字段中:
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"), "state" : "CA", "price" : 41, "quantity" : 162, "sumQuantityForState" : 162 } { "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"), "state" : "CA", "price" : 13, "quantity" : 120, "sumQuantityForState" : 282 } { "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"), "state" : "CA", "price" : 12, "quantity" : 145, "sumQuantityForState" : 427 } { "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"), "state" : "WA", "price" : 43, "quantity" : 134, "sumQuantityForState" : 134 } { "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"), "state" : "WA", "price" : 13, "quantity" : 104, "sumQuantityForState" : 238 } { "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"), "state" : "WA", "price" : 14, "quantity" : 140, "sumQuantityForState" : 378 }