On this page本页内容
{ $topN: { n: <expression>, sortBy: { <field1>: <sort order>, <field2>: <sort order> ... }, output: <expression> } }
n
_id
value for $group
.$group
的_id
值。$sort
.$sort
。output
Null
和缺少值$topN
$topN
null
。db.aggregate( [ { $documents: [ { playerId: "PlayerA", gameId: "G1", score: 1 }, { playerId: "PlayerB", gameId: "G1", score: 2 }, { playerId: "PlayerC", gameId: "G1", score: 3 }, { playerId: "PlayerD", gameId: "G1"}, { playerId: "PlayerE", gameId: "G1", score: null } ] }, { $group: { _id: "$gameId", playerId: { $topN: { output: [ "$playerId", "$score" ], sortBy: { "score": 1 }, n: 3 } } } } ] )
In this example:在此示例中:
$documents
$group
gameId
. gameId
对文档进行分组。gameId
, G1
.gameId
,G1
。PlayerD
PlayerE
has a null score
. PlayerE
的分数为空。null
。playerId
and score
fields are specified as output : ["$playerId"," $score"]
and returned as array values.playerId
和score
字段被指定为output : ["$playerId"," $score"]
,并作为数组值返回。sortBy: { "score" : 1 }
, the null values are sorted to the front of the returned playerId
array.sortBy: { "score" : 1 }
,空值被排序到返回的playerId
数组的前面。[ { _id: 'G1', playerId: [ [ 'PlayerD', null ], [ 'PlayerE', null ], [ 'PlayerA', 1 ] ] } ]
When sorting different types, the order of BSON data types is used to determine ordering. 对不同类型排序时,BSON数据类型的顺序用于确定排序。As an example, consider a collection whose values consist of strings and numbers.例如,考虑一个值由字符串和数字组成的集合。
db.aggregate( [ { $documents: [ { playerId: "PlayerA", gameId: "G1", score: 1 }, { playerId: "PlayerB", gameId: "G1", score: "2" }, { playerId: "PlayerC", gameId: "G1", score: "" } ] }, { $group: { _id: "$gameId", playerId: { $topN: { output: ["$playerId","$score"], sortBy: {"score": -1}, n: 3 } } } } ] )
In this example:在此示例中:
PlayerA
PlayerB
"2"
score."2"
分数。PlayerC
Because the sort is in descending 因为排序是降序{ "score" : -1 }
, the string literal values are sorted before PlayerA
's numeric score:{ "score" : -1 }
,所以字符串文字值在PlayerA的数字分数之前排序:
[ { _id: "G1", playerId: [ [ "PlayerB", "2" ], [ "PlayerC", "" ], [ "PlayerA", 1 ] ] } ]
$topN
is not supported as a aggregation expression.不支持作为聚合表达式。
$topN
is supported as a 支持作为窗口运算符。window operator
.
Groups within the $topN
aggregation pipeline are subject to the 100 MB limit pipeline limit. $topN
聚合管道中的组受100 MB管道限制的限制。If this limit is exceeded for an individual group, the aggregation fails with an error.如果单个组超过了此限制,则聚合将失败并返回错误。
Consider a 考虑一个包含以下文档的gamescores
collection with the following documents:gamescores
集合:
db.gamescores.insertMany([ { playerId: "PlayerA", gameId: "G1", score: 31 }, { playerId: "PlayerB", gameId: "G1", score: 33 }, { playerId: "PlayerC", gameId: "G1", score: 99 }, { playerId: "PlayerD", gameId: "G1", score: 1 }, { playerId: "PlayerA", gameId: "G2", score: 10 }, { playerId: "PlayerB", gameId: "G2", score: 14 }, { playerId: "PlayerC", gameId: "G2", score: 66 }, { playerId: "PlayerD", gameId: "G2", score: 80 } ])
Scores
You can use the 您可以使用$topN
accumulator to find the highest scoring players in a single game.$topN
累加器查找单个游戏中得分最高的玩家。
db.gamescores.aggregate( [ { $match : { gameId : "G1" } }, { $group: { _id: "$gameId", playerId: { $topN: { output: ["$playerId", "$score"], sortBy: { "score": -1 }, n:3 } } } } ] )
The example pipeline:示例管道:
$match
to filter the results on a single gameId
. In this case, G1
.$match
筛选单个gameId
上的结果。在这种情况下,G1
。$group
to group the results by gameId
. In this case, G1
.$group
按gameId
对结果进行分组。在这种情况下,G1。{ "score": -1 }
to sort the results in descending order.{ "score": -1 }
按降序对结果进行排序。$topN
with output : ["$playerId"," $score"]
.output : ["$playerId"," $score"]
指定从$topN
输出的字段。$topN
to return the top three documents with the highest score
for the G1
game with n : 3
.$topN
返回G1
游戏n:3
中得分最高的前三个文档。The operation returns the following results:该操作返回以下结果:
[ { _id: 'G1', playerId: [ [ 'PlayerC', 99 ], [ 'PlayerB', 33 ], [ 'PlayerA', 31 ] ] } ]
The SQL equivalent to this query is:与此查询等效的SQL是:
SELECT T3.GAMEID,T3.PLAYERID,T3.SCORE FROM GAMESCORES AS GS JOIN (SELECT TOP 3 GAMEID,PLAYERID,SCORE FROM GAMESCORES WHERE GAMEID = 'G1' ORDER BY SCORE DESC) AS T3 ON GS.GAMEID = T3.GAMEID GROUP BY T3.GAMEID,T3.PLAYERID,T3.SCORE ORDER BY T3.SCORE DESC
You can use the 您可以使用$topN
accumulator to find the highest scoring players in each game.$topN
累加器查找每场比赛中得分最高的玩家。
db.gamescores.aggregate( [ { $group: { _id: "$gameId", playerId: { $topN: { output: [ "$playerId","$score" ], sortBy: { "score": -1 }, n: 3 } } } } ] )
The example pipeline:示例管道:
$group
to group the results by gameId
.$group
按gameId
对结果进行分组。$topN
with output : ["$playerId", "$score"]
.output : ["$playerId", "$score"]
指定从$topN
输出的字段。{ "score": -1 }
to sort the results in descending order.{ "score": -1 }
按降序对结果进行排序。$topN
to return the top three documents with the highest score
for each game with n: 3
.$topN
返回n:3
的每个游戏得分最高的前三个文档。The operation returns the following results:该操作返回以下结果:
[ { _id: 'G1', playerId: [ [ 'PlayerC', 99 ], [ 'PlayerB', 33 ], [ 'PlayerA', 31 ] ] }, { _id: 'G2', playerId: [ [ 'PlayerD', 80 ], [ 'PlayerC', 66 ], [ 'PlayerB', 14 ] ] } ]
The SQL equivalent to this query is:与此查询等效的SQL是:
SELECT PLAYERID,GAMEID,SCORE FROM( SELECT ROW_NUMBER() OVER (PARTITION BY GAMEID ORDER BY SCORE DESC) AS GAMERANK, GAMEID,PLAYERID,SCORE FROM GAMESCORES ) AS T WHERE GAMERANK <= 3 ORDER BY GAMEID
n
Based on the Group Key for $group
$Group
的组密钥计算n
You can also assign the value of 还可以动态指定n
dynamically. n
的值。In this example, the 在本例中,$cond
expression is used on the gameId
field.$cond
表达式用于gameId
字段。
db.gamescores.aggregate([ { $group: { _id: {"gameId": "$gameId"}, gamescores: { $topN: { output: "$score", n: { $cond: { if: {$eq: ["$gameId","G2"] }, then: 1, else: 3 } }, sortBy: { "score": -1 } } } } } ] )
The example pipeline:示例管道:
$group
to group the results by gameId
.$group
按gameId
对结果进行分组。$topN
with output : "$score"
.$topN
输出的字段,其输出为output : "$score"
。gameId
is G2
then n
is 1, otherwise n
is 3.gameId
为G2
,则n
为1,否则n
为3。{ "score": -1 }
to sort the results in descending order.{ "score": -1 }
按降序对结果进行排序。The operation returns the following results:该操作返回以下结果:
[ { _id: { gameId: 'G1' }, gamescores: [ 99, 33, 31 ] }, { _id: { gameId: 'G2' }, gamescores: [ 80 ] } ]