On this page本页内容
You can pass a field path operand or a document operand to unwind an array field.可以传递字段路径操作数或文档操作数以展开数组字段。
You can pass the array field path to 您可以将数组字段路径传递给$unwind
. $unwind
。When using this syntax, 使用此语法时,如果字段值为$unwind
does not output a document if the field value is null, missing, or an empty array.null
、缺失或空数组,$unwind
不会输出文档。
{ $unwind: <field path> }
When you specify the field path, prefix the field name with a dollar sign 指定字段路径时,在字段名称前面加上美元符号$
and enclose in quotes.$
,并用引号括起来。
You can pass a document to 您可以将文档传递给$unwind
to specify various behavior options.$unwind
以指定各种行为选项。
{ $unwind: { path: <field path>, includeArrayIndex: <string>, preserveNullAndEmptyArrays: <boolean> } }
path | string |
|
includeArrayIndex | string |
|
preserveNullAndEmptyArrays | boolean |
|
Changed in version 3.2.在版本3.2中更改。
$unwind
$unwind
treats the operand as a single element array. $unwind
将操作数视为单元素数组。$unwind
depends on the value of the preserveNullAndEmptyArrays option.null
、缺失或空数组,$unwind
的行为取决于preserveNullAndEmptyArrays选项的值。
Previously, if a value in the field specified by the field path is not an array, 以前,如果字段路径指定的字段中的值不是数组,则db.collection.aggregate()
generates an error.db.collection.aggregate()
会生成错误。
If you specify a path for a field that does not exist in an input document or the field is an empty array, 如果为输入文档中不存在的字段指定路径,或者该字段为空数组,则默认情况下,$unwind
, by default, ignores the input document and will not output documents for that input document.$unwind
将忽略输入文档,并且不会输出该输入文档的文档。
To output documents where the array field is missing, null or an empty array, use the preserveNullAndEmptyArrays option.若要输出缺少数组字段、空或空数组的文档,请使用preserveNullAndEmptyArrays
选项。
In 在mongosh
, create a sample collection named inventory
with the following document:mongosh
中,使用以下文档创建名为inventory
的样本集合:
db.inventory.insertOne({ "_id" : 1, "item" : "ABC1", sizes: [ "S", "M", "L"] })
The following aggregation uses the 以下聚合使用$unwind
stage to output a document for each element in the sizes
array:$unwind
阶段为sizes
数组中的每个元素输出文档:
db.inventory.aggregate( [ { $unwind : "$sizes" } ] )
The operation returns the following results:该操作返回以下结果:
{ "_id" : 1, "item" : "ABC1", "sizes" : "S" } { "_id" : 1, "item" : "ABC1", "sizes" : "M" } { "_id" : 1, "item" : "ABC1", "sizes" : "L" }
Each document is identical to the input document except for the value of the 每个文档都与输入文档相同,但sizes
field which now holds a value from the original sizes
array.sizes
字段的值除外,该字段现在保存原始sizes
数组中的值。
Consider the 以clothing
collection:clothing
集合为例:
db.clothing.insertMany([ { "_id" : 1, "item" : "Shirt", "sizes": [ "S", "M", "L"] }, { "_id" : 2, "item" : "Shorts", "sizes" : [ ] }, { "_id" : 3, "item" : "Hat", "sizes": "M" }, { "_id" : 4, "item" : "Gloves" }, { "_id" : 5, "item" : "Scarf", "sizes" : null } ])
如果出现以下情况,$unwind
treats the sizes
field as a single element array if:$unwind
将大小字段视为单个元素数组:
Expand the 使用sizes
arrays with $unwind
:$unwind
展开sizes
数组:
db.clothing.aggregate( [ { $unwind: { path: "$sizes" } } ] )
The $unwind
operation returns:$unwind
操作返回:
{ _id: 1, item: 'Shirt', sizes: 'S' }, { _id: 1, item: 'Shirt', sizes: 'M' }, { _id: 1, item: 'Shirt', sizes: 'L' }, { _id: 3, item: 'Hat', sizes: 'M' }
"_id": 1
, sizes
is a populated array. "_id": 1
中,sizes
是一个填充数组$unwind
returns a document for each element in the sizes
field.$unwind
为sizes
字段中的每个元素返回一个文档。"_id": 3
, sizes
resolves to a single element array."_id": 3
中,sizes
解析为单个元素数组。"_id": 2, "_id": 4
, and "_id": 5
do not return anything because the sizes
field cannot be reduced to a single element array."_id": 2, "_id": 4
和"_id": 5
不返回任何内容,因为sizes
字段不能缩减为单个元素数组。preserveNullAndEmptyArrays
includeArrayIndex
The preserveNullAndEmptyArrays
and includeArrayIndex
examples use the following collection:preserveNullAndEmptyArrays
和includeArrayIndex
索引示例使用以下集合:
db.inventory2.insertMany([ { "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] }, { "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] }, { "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" }, { "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") }, { "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null } ])
preserveNullAndEmptyArrays
The following 以下$unwind
operation uses the preserveNullAndEmptyArrays option to include documents whose sizes
field is null, missing, or an empty array.$unwind
操作使用preserveNullAndEmptyArrays
选项来包括sizes
字段为null
、缺失或空数组的文档。
db.inventory2.aggregate( [ { $unwind: { path: "$sizes", preserveNullAndEmptyArrays: true } } ] )
The output includes those documents where the 输出包括sizes
field is null, missing, or an empty array:sizes
字段为空、缺失或空数组的文档:
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" } { "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" } { "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" } { "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") } { "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" } { "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") } { "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null }
includeArrayIndex
The following 以下$unwind
operation uses the includeArrayIndex option to include the array index in the output.$unwind
操作使用includeArrayIndex
选项在输出中包含数组索引。
db.inventory2.aggregate( [ { $unwind: { path: "$sizes", includeArrayIndex: "arrayIndex" } }])
The operation unwinds the 该操作将展开sizes
array and includes the array index in the new arrayIndex
field. sizes
数组,并将数组索引包含在新的arrayIndex
字段中。If the 如果sizes
field does not resolve to a populated array but is not missing, null, or an empty array, the arrayIndex
field is null
.sizes
字段未解析为填充的数组,但未丢失、空或空数组,则arrayIndex
字段为空。
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S", "arrayIndex" : NumberLong(0) } { "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M", "arrayIndex" : NumberLong(1) } { "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L", "arrayIndex" : NumberLong(2) } { "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M", "arrayIndex" : null }
In 在mongosh
, create a sample collection named inventory2
with the following documents:mongosh
中,使用以下文档创建名为inventory2
的样本集合:
db.inventory2.insertMany([ { "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] }, { "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] }, { "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" }, { "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") }, { "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null } ])
The following pipeline unwinds the 以下管道展开sizes
array and groups the resulting documents by the unwound size values:sizes
数组,并根据展开的大小值对结果文档进行分组:
db.inventory2.aggregate( [ // First Stage { $unwind: { path: "$sizes", preserveNullAndEmptyArrays: true } }, // Second Stage { $group: { _id: "$sizes", averagePrice: { $avg: "$price" } } }, // Third Stage { $sort: { "averagePrice": -1 } } ] )
The $unwind
stage outputs a new document for each element in the sizes
array. $unwind
阶段为sizes
数组中的每个元素输出一个新文档。The stage uses the preserveNullAndEmptyArrays option to include in the output those documents where 该阶段使用sizes
field is missing, null or an empty array. preserveNullAndEmptyArrays
选项在输出中包括缺少sizes
字段、null
或空数组的文档。This stage passes the following documents to the next stage:此阶段将以下文件传递到下一阶段:
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" } { "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" } { "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" } { "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") } { "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" } { "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") } { "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null }
The $group
stage groups the documents by sizes
and calculates the average price of each size. $group
阶段按sizes
对文档进行分组,并计算每个大小的平均价格。This stage passes the following documents to the next stage:此阶段将以下文档传递到下一阶段:
{ "_id" : "S", "averagePrice" : NumberDecimal("80") } { "_id" : "L", "averagePrice" : NumberDecimal("80") } { "_id" : "M", "averagePrice" : NumberDecimal("120") } { "_id" : null, "averagePrice" : NumberDecimal("45.25") }
The $sort
stage sorts the documents by averagePrice
in descending order. The operation returns the following result:$sort
阶段按averagePrice
按降序对文档进行排序。该操作返回以下结果:
{ "_id" : "M", "averagePrice" : NumberDecimal("120") } { "_id" : "L", "averagePrice" : NumberDecimal("80") } { "_id" : "S", "averagePrice" : NumberDecimal("80") } { "_id" : null, "averagePrice" : NumberDecimal("45.25") }
In 在mongosh
, create a sample collection named sales
with the following documents:mongosh
中,使用以下文档创建名为sales
的样本集合:
db.sales.insertMany([ { _id: "1", "items" : [ { "name" : "pens", "tags" : [ "writing", "office", "school", "stationary" ], "price" : NumberDecimal("12.00"), "quantity" : NumberInt("5") }, { "name" : "envelopes", "tags" : [ "stationary", "office" ], "price" : NumberDecimal("19.95"), "quantity" : NumberInt("8") } ] }, { _id: "2", "items" : [ { "name" : "laptop", "tags" : [ "office", "electronics" ], "price" : NumberDecimal("800.00"), "quantity" : NumberInt("1") }, { "name" : "notepad", "tags" : [ "stationary", "school" ], "price" : NumberDecimal("14.95"), "quantity" : NumberInt("3") } ] } ])
The following operation groups the items sold by their tags and calculates the total sales amount per each tag.以下操作将按标签销售的项目分组,并计算每个标签的总销售额。
db.sales.aggregate([ // First Stage { $unwind: "$items" }, // Second Stage { $unwind: "$items.tags" }, // Third Stage { $group: { _id: "$items.tags", totalSalesAmount: { $sum: { $multiply: [ "$items.price", "$items.quantity" ] } } } } ])
The first 第一个$unwind
stage outputs a new document for each element in the items
array:$unwind
阶段为items
数组中的每个元素输出一个新文档:
{ "_id" : "1", "items" : { "name" : "pens", "tags" : [ "writing", "office", "school", "stationary" ], "price" : NumberDecimal("12.00"), "quantity" : 5 } } { "_id" : "1", "items" : { "name" : "envelopes", "tags" : [ "stationary", "office" ], "price" : NumberDecimal("19.95"), "quantity" : 8 } } { "_id" : "2", "items" : { "name" : "laptop", "tags" : [ "office", "electronics" ], "price" : NumberDecimal("800.00"), "quantity" : 1 } } { "_id" : "2", "items" : { "name" : "notepad", "tags" : [ "stationary", "school" ], "price" : NumberDecimal("14.95"), "quantity" : 3 } }
The second 第二个$unwind
stage outputs a new document for each element in the items.tags
arrays:$unwind
阶段为items.tags
数组中的每个元素输出一个新文档:
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "writing", "price" : NumberDecimal("12.00"), "quantity" : 5 } } { "_id" : "1", "items" : { "name" : "pens", "tags" : "office", "price" : NumberDecimal("12.00"), "quantity" : 5 } } { "_id" : "1", "items" : { "name" : "pens", "tags" : "school", "price" : NumberDecimal("12.00"), "quantity" : 5 } } { "_id" : "1", "items" : { "name" : "pens", "tags" : "stationary", "price" : NumberDecimal("12.00"), "quantity" : 5 } } { "_id" : "1", "items" : { "name" : "envelopes", "tags" : "stationary", "price" : NumberDecimal("19.95"), "quantity" : 8 } } { "_id" : "1", "items" : { "name" : "envelopes", "tags" : "office", "price" : NumberDecimal("19.95"), "quantity" : 8 } } { "_id" : "2", "items" : { "name" : "laptop", "tags" : "office", "price" : NumberDecimal("800.00"), "quantity" : 1 } } { "_id" : "2", "items" : { "name" : "laptop", "tags" : "electronics", "price" : NumberDecimal("800.00"), "quantity" : 1 } } { "_id" : "2", "items" : { "name" : "notepad", "tags" : "stationary", "price" : NumberDecimal("14.95"), "quantity" : 3 } } { "_id" : "2", "items" : { "name" : "notepad", "tags" : "school", "price" : NumberDecimal("14.95"), "quantity" : 3 } }
The $group
stage groups the documents by the tag and calculates the total sales amount of items with each tag:$group
阶段按标记对文档进行分组,并计算每个标记的项目的总销售额:
{ "_id" : "writing", "totalSalesAmount" : NumberDecimal("60.00") } { "_id" : "stationary", "totalSalesAmount" : NumberDecimal("264.45") } { "_id" : "electronics", "totalSalesAmount" : NumberDecimal("800.00") } { "_id" : "school", "totalSalesAmount" : NumberDecimal("104.85") } { "_id" : "office", "totalSalesAmount" : NumberDecimal("1019.60") }