$unwind (aggregation)
On this page
Definition
Syntax
You can pass a field path operand or a document operand to unwind an array field.
Field Path Operand
You can pass the array field path to $unwind. When using this syntax, $unwind does not output a document if the field value is null, missing, or an empty array.
{ $unwind: <field path> }
When you specify the field path, prefix the field name with a dollar sign $ and enclose in quotes.
Document Operand with Options
You can pass a document to $unwind to specify various behavior options.
{
$unwind:
{
path: <field path>,
includeArrayIndex: <string>,
preserveNullAndEmptyArrays: <boolean>
}
}
| Field | Type | Description |
|---|---|---|
| path | string | Field path to an array field. To specify a field path, prefix the field name with a dollar sign $ and enclose in quotes.
|
| includeArrayIndex | string | Optional. The name of a new field to hold the array index of the element. The name cannot start with a dollar sign $.
|
| preserveNullAndEmptyArrays | boolean | Optional.
false.
|
Behaviors
Non-Array Field Path
-
When the operand does not resolve to an array, but is not missing,
null, or an empty array,$unwindtreats the operand as a single element array. -
When the operand is
null, missing, or an empty array$unwindfollows the behavior set for the preserveNullAndEmptyArrays option.
Missing Field
If you specify a path for a field that does not exist in an input document or the field is an empty array, $unwind, by default, ignores the input document and will not output documents for that input document.
To output documents where the array field is missing, null or an empty array, use the preserveNullAndEmptyArrays option.
Examples
Unwind Array
In mongosh, create a sample collection named inventory with the following document:
db.inventory.insertOne({ "_id" : 1, "item" : "ABC1", sizes: [ "S", "M", "L"] })
The following aggregation uses the $unwind stage to output a document for each element in the sizes array:
db.inventory.aggregate( [ { $unwind : "$sizes" } ] )
The operation returns the following results:
{ "_id" : 1, "item" : "ABC1", "sizes" : "S" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "M" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "L" }
Each document is identical to the input document except for the value of the sizes field which now holds a value from the original sizes array.
Missing or Non-array Values
Consider the clothing collection:
db.clothing.insertMany([ { "_id" : 1, "item" : "Shirt", "sizes": [ "S", "M", "L"] }, { "_id" : 2, "item" : "Shorts", "sizes" : [ ] }, { "_id" : 3, "item" : "Hat", "sizes": "M" }, { "_id" : 4, "item" : "Gloves" }, { "_id" : 5, "item" : "Scarf", "sizes" : null } ])
$unwind treats the sizes field as a single element array if:
-
the field is present,
-
the value is not null, and
-
the value is not an empty array.
Expand the sizes arrays with $unwind:
db.clothing.aggregate( [ { $unwind: { path: "$sizes" } } ] )
The $unwind operation returns:
{ _id: 1, item: 'Shirt', sizes: 'S' },
{ _id: 1, item: 'Shirt', sizes: 'M' },
{ _id: 1, item: 'Shirt', sizes: 'L' },
{ _id: 3, item: 'Hat', sizes: 'M' }
-
In document
"_id": 1,sizesis a populated array.$unwindreturns a document for each element in thesizesfield. -
In document
"_id": 3,sizesresolves to a single element array. -
Documents
"_id": 2, "_id": 4, and"_id": 5do not return anything because thesizesfield cannot be reduced to a single element array.
Note
The { path: <FIELD> } syntax is optional. The following $unwind operations are equivalent.
db.clothing.aggregate( [ { $unwind: "$sizes" } ] ) db.clothing.aggregate( [ { $unwind: { path: "$sizes" } } ] )
preserveNullAndEmptyArrays and includeArrayIndex
The preserveNullAndEmptyArrays and includeArrayIndex examples use the following collection:
db.inventory2.insertMany([ { "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] }, { "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] }, { "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" }, { "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") }, { "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null } ])
preserveNullAndEmptyArrays
The following $unwind operation uses the preserveNullAndEmptyArrays option to include documents whose sizes field is null, missing, or an empty array.
db.inventory2.aggregate( [ { $unwind: { path: "$sizes", preserveNullAndEmptyArrays: true } } ] )
The output includes those documents where the sizes field is null, missing, or an empty array:
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }
{ "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") }
{ "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null }includeArrayIndex
The following $unwind operation uses the includeArrayIndex option to include the array index in the output.
db.inventory2.aggregate( [ { $unwind: { path: "$sizes", includeArrayIndex: "arrayIndex" } }])
The operation unwinds the sizes array and includes the array index in the new arrayIndex field. If the sizes field does not resolve to a populated array but is not missing, null, or an empty array, the arrayIndex field is null.
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S", "arrayIndex" : NumberLong(0) }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M", "arrayIndex" : NumberLong(1) }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L", "arrayIndex" : NumberLong(2) }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M", "arrayIndex" : null }Group by Unwound Values
In mongosh, create a sample collection named inventory2 with the following documents:
db.inventory2.insertMany([ { "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] }, { "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] }, { "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" }, { "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") }, { "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null } ])
The following pipeline unwinds the sizes array and groups the resulting documents by the unwound size values:
db.inventory2.aggregate( [ // First Stage { $unwind: { path: "$sizes", preserveNullAndEmptyArrays: true } }, // Second Stage { $group: { _id: "$sizes", averagePrice: { $avg: "$price" } } }, // Third Stage { $sort: { "averagePrice": -1 } } ] )
- First Stage:
-
The
$unwindstage outputs a new document for each element in thesizesarray. The stage uses the preserveNullAndEmptyArrays option to include in the output those documents wheresizesfield is missing, null or an empty array. This stage passes the following documents to the next stage:{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" } { "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" } { "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" } { "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") } { "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" } { "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") } { "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null } - Second Stage:
-
The
$groupstage groups the documents bysizesand calculates the average price of each size. This stage passes the following documents to the next stage:{ "_id" : "S", "averagePrice" : NumberDecimal("80") } { "_id" : "L", "averagePrice" : NumberDecimal("80") } { "_id" : "M", "averagePrice" : NumberDecimal("120") } { "_id" : null, "averagePrice" : NumberDecimal("45.25") } - Third Stage:
-
The
$sortstage sorts the documents byaveragePricein descending order. The operation returns the following result:{ "_id" : "M", "averagePrice" : NumberDecimal("120") } { "_id" : "L", "averagePrice" : NumberDecimal("80") } { "_id" : "S", "averagePrice" : NumberDecimal("80") } { "_id" : null, "averagePrice" : NumberDecimal("45.25") }
Unwind Embedded Arrays
In mongosh, create a sample collection named sales with the following documents:
db.sales.insertMany([ { _id: "1", "items" : [ { "name" : "pens", "tags" : [ "writing", "office", "school", "stationary" ], "price" : NumberDecimal("12.00"), "quantity" : NumberInt("5") }, { "name" : "envelopes", "tags" : [ "stationary", "office" ], "price" : NumberDecimal("19.95"), "quantity" : NumberInt("8") } ] }, { _id: "2", "items" : [ { "name" : "laptop", "tags" : [ "office", "electronics" ], "price" : NumberDecimal("800.00"), "quantity" : NumberInt("1") }, { "name" : "notepad", "tags" : [ "stationary", "school" ], "price" : NumberDecimal("14.95"), "quantity" : NumberInt("3") } ] } ])
The following operation groups the items sold by their tags and calculates the total sales amount per each tag.
db.sales.aggregate([ // First Stage { $unwind: "$items" }, // Second Stage { $unwind: "$items.tags" }, // Third Stage { $group: { _id: "$items.tags", totalSalesAmount: { $sum: { $multiply: [ "$items.price", "$items.quantity" ] } } } } ])
- First Stage
-
The first
$unwindstage outputs a new document for each element in theitemsarray:{ "_id" : "1", "items" : { "name" : "pens", "tags" : [ "writing", "office", "school", "stationary" ], "price" : NumberDecimal("12.00"), "quantity" : 5 } } { "_id" : "1", "items" : { "name" : "envelopes", "tags" : [ "stationary", "office" ], "price" : NumberDecimal("19.95"), "quantity" : 8 } } { "_id" : "2", "items" : { "name" : "laptop", "tags" : [ "office", "electronics" ], "price" : NumberDecimal("800.00"), "quantity" : 1 } } { "_id" : "2", "items" : { "name" : "notepad", "tags" : [ "stationary", "school" ], "price" : NumberDecimal("14.95"), "quantity" : 3 } } - Second Stage
-
The second
$unwindstage outputs a new document for each element in theitems.tagsarrays:{ "_id" : "1", "items" : { "name" : "pens", "tags" : "writing", "price" : NumberDecimal("12.00"), "quantity" : 5 } } { "_id" : "1", "items" : { "name" : "pens", "tags" : "office", "price" : NumberDecimal("12.00"), "quantity" : 5 } } { "_id" : "1", "items" : { "name" : "pens", "tags" : "school", "price" : NumberDecimal("12.00"), "quantity" : 5 } } { "_id" : "1", "items" : { "name" : "pens", "tags" : "stationary", "price" : NumberDecimal("12.00"), "quantity" : 5 } } { "_id" : "1", "items" : { "name" : "envelopes", "tags" : "stationary", "price" : NumberDecimal("19.95"), "quantity" : 8 } } { "_id" : "1", "items" : { "name" : "envelopes", "tags" : "office", "price" : NumberDecimal("19.95"), "quantity" : 8 } } { "_id" : "2", "items" : { "name" : "laptop", "tags" : "office", "price" : NumberDecimal("800.00"), "quantity" : 1 } } { "_id" : "2", "items" : { "name" : "laptop", "tags" : "electronics", "price" : NumberDecimal("800.00"), "quantity" : 1 } } { "_id" : "2", "items" : { "name" : "notepad", "tags" : "stationary", "price" : NumberDecimal("14.95"), "quantity" : 3 } } { "_id" : "2", "items" : { "name" : "notepad", "tags" : "school", "price" : NumberDecimal("14.95"), "quantity" : 3 } } - Third Stage
-
The
$groupstage groups the documents by the tag and calculates the total sales amount of items with each tag:{ "_id" : "writing", "totalSalesAmount" : NumberDecimal("60.00") } { "_id" : "stationary", "totalSalesAmount" : NumberDecimal("264.45") } { "_id" : "electronics", "totalSalesAmount" : NumberDecimal("800.00") } { "_id" : "school", "totalSalesAmount" : NumberDecimal("104.85") } { "_id" : "office", "totalSalesAmount" : NumberDecimal("1019.60") }