mapReduce
On this page本页内容
Aggregation Pipeline as Alternative to Map-Reduce聚合管道作为Map-Reduce的替代方案
Starting in MongoDB 5.0, map-reduce is deprecated:从MongoDB 5.0开始,不赞成使用map-reduce:
Instead of map-reduce, you should use an aggregation pipeline.您应该使用聚合管道,而不是map-reduce。Aggregation pipelines provide better performance and usability than map-reduce.聚合管道提供了比映射减少更好的性能和可用性。You can rewrite map-reduce operations using aggregation pipeline stages, such as您可以使用聚合管道阶段(如$group
,$merge
, and others.$group
、$merge
和其他阶段)重写映射减少操作。For map-reduce operations that require custom functionality, you can use the对于需要自定义功能的map-reduce操作,可以使用$accumulator
and$function
aggregation operators, available starting in version 4.4.$accumulator
和$function
聚合运算符,这些运算符从4.4版开始提供。You can use those operators to define custom aggregation expressions in JavaScript.您可以使用这些运算符在JavaScript中定义自定义聚合表达式。
For examples of aggregation pipeline alternatives to map-reduce, see:有关映射减少的聚合管道替代方案的示例,请参阅:
Definition定义
mapReduce
-
The
mapReduce
command allows you to run map-reduce aggregation operations over a collection.TipIn
mongosh
, this command can also be run through themapReduce()
helper method.Helper methods are convenient for
mongosh
users, but they may not return the same level of information as database commands. In cases where the convenience is not needed or the additional return fields are required, use the database command.
Syntax语法
Starting in version 4.4, MongoDB ignores the verbose option.
Starting in version 4.2, MongoDB deprecates:
- The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.
- The explicit specification of nonAtomic: false option.
The command has the following syntax:
db.runCommand(
{
mapReduce: <string>,
map: <string or JavaScript>,
reduce: <string or JavaScript>,
finalize: <string or JavaScript>,
out: <output>,
query: <document>,
sort: <document>,
limit: <number>,
scope: <document>,
jsMode: <boolean>,
verbose: <boolean>,
bypassDocumentValidation: <boolean>,
collation: <document>,
maxTimeMS: <integer>,
writeConcern: <document>,
comment: <any>
}
)
Command Fields命令字段
The command takes the following fields as arguments:该命令将以下字段作为参数:
mapReduce | string | query before being processed by the map function. map 函数处理之前使用query 进行筛选。
Note |
map | JavaScript or String | A JavaScript function that associates or "maps" a value with a key and emits the key and value pair . You can specify the function as BSON type Javascript (BSON Type 13) or String (BSON Type 2).For more information, see Requirements for the map Function. |
reduce | JavaScript or String | A JavaScript function that "reduces" to a single object all the values associated with a particular key . You can specify the function as BSON type JavaScript (BSON Type 13) or String (BSON Type 2).For more information, see Requirements for the reduce Function. |
out | string or document | Specifies where to output the result of the map-reduce operation. You can either output to a collection or return the result inline. On a primary member of a replica set you can output either to a collection or inline, but on a secondary, only inline output is possible. For more information, see out Options. |
query | document | map function. |
sort | document | |
limit | number | map function. |
finalize | JavaScript or String | reduce function. You can specify the function as BSON type JavaScript (BSON Type 13) or String (BSON Type 2).For more information, see Requirements for the finalize Function. |
scope | document | map , reduce and finalize functions. |
jsMode | boolean | map and reduce functions.Defaults to false .If false :
true :
|
verbose | boolean | timing information in the result information. Set verbose to true to include the timing information.Defaults to false .Starting in MongoDB 4.4, this option is ignored. The result information always excludes the timing information. You can view timing information by running explain with the mapReduce command in the "executionStats" or "allPlansExecution" verbosity modes. |
bypassDocumentValidation | boolean | mapReduce to bypass document validation during the operation. This lets you insert documents that do not meet the validation requirements.
Note If the output option is set to inline , no document validation occurs. If the output goes to a collection, mapReduce observes any validation rules which the collection has and does not insert any invalid documents unless the bypassDocumentValidation parameter is set to true. |
collation | document | Specifies the collation to use for the operation. collation collation 选项具有以下语法:collation: { locale field is mandatory; all other collation fields are optional. locale 字段是必需的;所有其他排序规则字段都是可选的。If the collation is unspecified but the collection has a default collation (see db.createCollection() ), the operation uses the collation specified for the collection.If no collation is specified for the collection or for the operations, MongoDB uses the simple binary comparison used in prior versions for string comparisons. You cannot specify multiple collations for an operation. For example, you cannot specify different collations per field, or if performing a find with a sort, you cannot use one collation for the find and another for the sort. |
maxTimeMS | non-negative integer | Specifies a time limit in milliseconds. If you do not specify a value for maxTimeMS , operations will not time out. A value of 0 explicitly specifies the default unbounded behavior.MongoDB terminates operations that exceed their allotted time limit using the same mechanism as db.killOp() . MongoDB only terminates an operation at one of its designated interrupt points. |
writeConcern | document | |
comment | any |
|
Usage用法
The following is a prototype usage of the mapReduce
command:
var mapFunction = function() { ... };
var reduceFunction = function(key, values) { ... };
db.runCommand(
{
mapReduce: <input-collection>,
map: mapFunction,
reduce: reduceFunction,
out: { merge: <output-collection> },
query: <query>
}
)
JavaScript in MongoDB
Although mapReduce
uses JavaScript, most interactions with MongoDB do not use JavaScript but use an idiomatic driver in the language of the interacting application.
Requirements for the map
Function
The map
function is responsible for transforming each input document into zero or more documents. It can access the variables defined in the scope
parameter, and has the following prototype:
function() {
...
emit(key, value);
}
The map
function has the following requirements:
- In the
map
function, reference the current document asthis
within the function. - The
map
function should not access the database for any reason. - The
map
function should be pure, or have no impact outside of the function (i.e. side effects.) - The
map
function may optionally callemit(key,value)
any number of times to create an output document associatingkey
withvalue
. - In MongoDB 4.2 and earlier, a single emit can only hold half of MongoDB's maximum BSON document size. MongoDB removes this restriction starting in version 4.4.
- Starting in MongoDB 4.4,
mapReduce
no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions. Themap
function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13). To pass constant values which will be accessible in themap
function, use thescope
parameter.
The use of JavaScript code with scope for themap
function has been deprecated since version 4.2.1.
The following map
function will call emit(key,value)
either 0 or 1 times depending on the value of the input document's status
field:
function() {
if (this.status == 'A')
emit(this.cust_id, 1);
}
The following map
function may call emit(key,value)
multiple times depending on the number of elements in the input document's items
field:
function() {
this.items.forEach(function(item){ emit(item.sku, 1); });
}
Requirements for the reduce
Function
The reduce
function has the following prototype:
function(key, values) {
...
return result;
}
The reduce
function exhibits the following behaviors:
- The
reduce
function should not access the database, even to perform read operations. - The
reduce
function should not affect the outside system. - MongoDB can invoke the
reduce
function more than once for the same key. In this case, the previous output from thereduce
function for that key will become one of the input values to the nextreduce
function invocation for that key. - The
reduce
function can access the variables defined in thescope
parameter. - The inputs to
reduce
must not be larger than half of MongoDB's maximum BSON document size. This requirement may be violated when large documents are returned and then joined together in subsequentreduce
steps. - Starting in MongoDB 4.4,
mapReduce
no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions. Thereduce
function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13). To pass constant values which will be accessible in thereduce
function, use thescope
parameter.
The use of JavaScript code with scope for thereduce
function has been deprecated since version 4.2.1.
Because it is possible to invoke the reduce
function more than once for the same key, the following properties need to be true:
- the type of the return object must be identical
to the type of the
value
emitted by themap
function. - the
reduce
function must be associative. The following statement must be true:reduce(key, [ C, reduce(key, [ A, B ]) ] ) == reduce( key, [ C, A, B ] )
- the
reduce
function must be idempotent. Ensure that the following statement is true:reduce( key, [ reduce(key, valuesArray) ] ) == reduce( key, valuesArray )
- the
reduce
function should be commutative: that is, the order of the elements in thevaluesArray
should not affect the output of thereduce
function, so that the following statement is true:reduce( key, [ A, B ] ) == reduce( key, [ B, A ] )
Requirements for the finalize
Function
The finalize
function has the following prototype:
function(key, reducedValue) {
...
return modifiedObject;
}
The finalize
function receives as its arguments a key
value and the reducedValue
from the reduce
function. Be aware that:
- The
finalize
function should not access the database for any reason. - The
finalize
function should be pure, or have no impact outside of the function (i.e. side effects.) - The
finalize
function can access the variables defined in thescope
parameter. - Starting in MongoDB 4.4,
mapReduce
no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions. Thefinalize
function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13). To pass constant values which will be accessible in thefinalize
function, use thescope
parameter.
The use of JavaScript code with scope for thefinalize
function has been deprecated since version 4.2.1.
out
Options
You can specify the following options for the out
parameter:
Output to a Collection
This option outputs to a new collection, and is not available on secondary members of replica sets.
out: <collectionName>
Output to a Collection with an Action
Starting in version 4.2, MongoDB deprecates:
- The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.
- The explicit specification of nonAtomic: false option.
This option is only available when passing a collection that already exists to out
. It is not available on secondary members of replica sets.
out: { <action>: <collectionName>
[, db: <dbName>]
[, sharded: <boolean> ]
[, nonAtomic: <boolean> ] }
When you output to a collection with an action, the out
has the following parameters:
<action>
: Specify one of the following actions::指定以下操作之一:replace
Replace the contents of the
<collectionName>
if the collection with the<collectionName>
exists.merge
Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, overwrite that existing document.
reduce
Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, apply the
reduce
function to both the new and the existing documents and overwrite the existing document with the result.
db
:Optional. The name of the database that you want the map-reduce operation to write its output. By default this will be the same database as the input collection.可选择的您希望map reduce操作写入其输出的数据库的名称。默认情况下,这将是与输入集合相同的数据库。sharded
:NoteStarting in version 4.2, the use of the从4.2版本开始,不赞成使用sharded
option is deprecated.sharded
选项。Optional. If
true
and you have enabled sharding on output database, the map-reduce operation will shard the output collection using the_id
field as the shard key.If
true
andcollectionName
is an existing unsharded collection, map-reduce fails.nonAtomic
:NoteStarting in MongoDB 4.2, explicitly setting
nonAtomic
tofalse
is deprecated.Optional. Specify output operation as non-atomic. This applies only to the
merge
andreduce
output modes, which may take minutes to execute.By default
nonAtomic
isfalse
, and the map-reduce operation locks the database during post-processing.If
nonAtomic
istrue
, the post-processing step prevents MongoDB from locking the database: during this time, other clients will be able to read intermediate states of the output collection.
Output Inline输出内联
Perform the map-reduce operation in memory and return the result. 在内存中执行映射缩减操作并返回结果。This option is the only available option for out
on secondary members of replica sets.
out: { inline: 1 }
The result must fit within the maximum size of a BSON document.
Required Access所需访问权限
If your MongoDB deployment enforces authentication, the user executing the mapReduce
command must possess the following privilege actions:
Map-reduce with {out : inline}
output option:
Map-reduce with the replace
action when outputting to a collection:
Map-reduce with the merge
or reduce
actions when outputting to a collection:
The readWrite
built-in role provides the necessary permissions to perform map-reduce aggregation.
Restrictions限制
MongoDB drivers automatically set afterClusterTime for operations associated with causally consistent sessions. Starting in MongoDB 4.2, the mapReduce
command no longer support afterClusterTime. As such, mapReduce
cannot be associated with causally consistent sessions.
Map-Reduce Examples
In mongosh
, the db.collection.mapReduce()
method is a wrapper around the mapReduce
command. The following examples use the db.collection.mapReduce()
method:
The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. 本节中的示例包括没有自定义聚合表达式的聚合管道备选方案。For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.
Create a sample collection orders
with these documents:
db.orders.insertMany([
{ _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" },
{ _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" },
{ _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"},
{ _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }
])
Return the Total Price Per Customer返回每个客户的总价
Perform the map-reduce operation on the 对orders
collection to group by the cust_id
, and calculate the sum of the price
for each cust_id
:orders
集合执行map-reduce操作,以cust_id
进行分组,并计算每个cust_id
的价格之和:
Define the map function to process each input document:定义映射函数以处理每个输入文档:In the function,在函数中,this
refers to the document that the map-reduce operation is processing.this
引用Map-Reduce操作正在处理的文档。- The function maps the
price
to thecust_id
for each document and emits thecust_id
andprice
.
var mapFunction1 = function() {
emit(this.cust_id, this.price);
};- Define the corresponding reduce function with two arguments
keyCustId
andvaluesPrices
:- The
valuesPrices
is an array whose elements are theprice
values emitted by the map function and grouped bykeyCustId
. The function reduces the该函数将valuesPrice
array to the sum of its elements.valuesPrice
数组的值减少为其元素的总和。
var reduceFunction1 = function(keyCustId, valuesPrices) {
return Array.sum(valuesPrices);
}; - The
- Perform map-reduce on all documents in the
orders
collection using themapFunction1
map function and thereduceFunction1
reduce function:db.orders.mapReduce(
mapFunction1,
reduceFunction1,
{ out: "map_reduce_example" }
)This operation outputs the results to a collection named
map_reduce_example
. If themap_reduce_example
collection already exists, the operation will replace the contents with the results of this map-reduce operation. - Query the
map_reduce_example
collection to verify the results:db.map_reduce_example.find().sort( { _id: 1 } )
The operation returns these documents:
{ "_id" : "Ant O. Knee", "value" : 95 }
{ "_id" : "Busby Bee", "value" : 125 }
{ "_id" : "Cam Elot", "value" : 60 }
{ "_id" : "Don Quis", "value" : 155 }
Aggregation Alternative聚合备选方案
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写映射减少操作,而无需定义自定义函数:
db.orders.aggregate([
{ $group: { _id: "$cust_id", value: { $sum: "$price" } } },
{ $out: "agg_alternative_1" }
])
- The
$group
stage groups by thecust_id
and calculates thevalue
field (See also$sum
). Thevalue
field contains the totalprice
for eachcust_id
.The stage output the following documents to the next stage:该阶段将以下文档输出到下一阶段:{ "_id" : "Don Quis", "value" : 155 }
{ "_id" : "Ant O. Knee", "value" : 95 }
{ "_id" : "Cam Elot", "value" : 60 }
{ "_id" : "Busby Bee", "value" : 125 } - Then, the
$out
writes the output to the collectionagg_alternative_1
. Alternatively, you could use$merge
instead of$out
. - Query the
agg_alternative_1
collection to verify the results:db.agg_alternative_1.find().sort( { _id: 1 } )
The operation returns the following documents:该操作返回以下文档:{ "_id" : "Ant O. Knee", "value" : 95 }
{ "_id" : "Busby Bee", "value" : 125 }
{ "_id" : "Cam Elot", "value" : 60 }
{ "_id" : "Don Quis", "value" : 155 }
See also: 另请参阅:
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例。
Calculate Order and Total Quantity with Average Quantity Per Item使用每个项目的平均数量计算订单和总数量
In the following example, you will see a map-reduce operation on the 在以下示例中,您将看到orders
collection for all documents that have an ord_date
value greater than or equal to 2020-03-01
.orders
集合上的映射减少操作,该操作适用于ord_date
值大于或等于2020-03-01
的所有文档。
The operation in the example:示例中的操作:
Groups by the按item.sku
field, and calculates the number of orders and the total quantity ordered for eachsku
.item.sku
字段分组,并计算每个sku
的订单数量和订购总量。Calculates the average quantity per order for each计算每个sku
value and merges the results into the output collection.sku
值的每个订单的平均数量,并将结果合并到输出集合中。
When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.合并结果时,如果现有文档与新结果具有相同的键,则该操作将覆盖现有文档。如果没有具有相同键的现有文档,则操作将插入该文档。
Example steps:示例步骤:
Define the map function to process each input document:定义映射函数以处理每个输入文档:In the function,在函数中,this
refers to the document that the map-reduce operation is processing.this
指map-reduce操作正在处理的文档。- For each item, the function associates the
sku
with a new objectvalue
that contains thecount
of1
and the itemqty
for the order and emits thesku
(stored in thekey
) and thevalue
.
var mapFunction2 = function() {
for (var idx = 0; idx < this.items.length; idx++) {
var key = this.items[idx].sku;
var value = { count: 1, qty: this.items[idx].qty };
emit(key, value);
}
};- Define the corresponding reduce function with two arguments
keySKU
andcountObjVals
:countObjVals
is an array whose elements are the objects mapped to the groupedkeySKU
values passed by map function to the reducer function.- The function reduces the
countObjVals
array to a single objectreducedValue
that contains thecount
and theqty
fields. - In
reducedVal
, thecount
field contains the sum of thecount
fields from the individual array elements, and theqty
field contains the sum of theqty
fields from the individual array elements.
var reduceFunction2 = function(keySKU, countObjVals) {
reducedVal = { count: 0, qty: 0 };
for (var idx = 0; idx < countObjVals.length; idx++) {
reducedVal.count += countObjVals[idx].count;
reducedVal.qty += countObjVals[idx].qty;
}
return reducedVal;
}; - Define a finalize function with two arguments
key
andreducedVal
. The function modifies thereducedVal
object to add a computed field namedavg
and returns the modified object:var finalizeFunction2 = function (key, reducedVal) {
reducedVal.avg = reducedVal.qty/reducedVal.count;
return reducedVal;
}; - Perform the map-reduce operation on the
orders
collection using themapFunction2
,reduceFunction2
, andfinalizeFunction2
functions:db.orders.mapReduce(
mapFunction2,
reduceFunction2,
{
out: { merge: "map_reduce_example2" },
query: { ord_date: { $gte: new Date("2020-03-01") } },
finalize: finalizeFunction2
}
);This operation uses the
query
field to select only those documents withord_date
greater than or equal tonew Date("2020-03-01")
. Then it outputs the results to a collectionmap_reduce_example2
.If the
map_reduce_example2
collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. That is, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document. Query the查询map_reduce_example2
collection to verify the results:map_reduce_example2
集合以验证结果:db.map_reduce_example2.find().sort( { _id: 1 } )
The operation returns these documents:
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
{ "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
{ "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
{ "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Aggregation Alternative聚合备选方案
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写映射减少操作,而无需定义自定义函数:
db.orders.aggregate( [
{ $match: { ord_date: { $gte: new Date("2020-03-01") } } },
{ $unwind: "$items" },
{ $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } } },
{ $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } },
{ $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } }
] )
The$match
stage selects only those documents withord_date
greater than or equal tonew Date("2020-03-01")
.$match
阶段仅选择ord_date
大于或等于new Date("2020-03-01")
的文档。- The
$unwind
stage breaks down the document by theitems
array field to output a document for each array element.For example:例如:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
... - The
$group
stage groups by theitems.sku
, calculating for each sku:-
- The
qty
field. Theqty
field contains the - total
qty
ordered per eachitems.sku
(See$sum
).
- The
-
- The
orders_ids
array. Theorders_ids
field contains an - array of distinct order
_id
's for theitems.sku
(See$addToSet
).
- The
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
{ "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
{ "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
{ "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
{ "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] } -
- The
$project
stage reshapes the output document to mirror the map-reduce's output to have two fields_id
andvalue
. The$project
sets: - The
$unwind
stage breaks down the document by theitems
array field to output a document for each array element.For example:例如:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
... - The
$group
stage groups by theitems.sku
, calculating for each sku:- The
qty
field. Theqty
field contains the totalqty
ordered per eachitems.sku
using$sum
. - The
orders_ids
array. Theorders_ids
field contains an array of distinct order_id
's for theitems.sku
using$addToSet
.
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
{ "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
{ "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
{ "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
{ "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] } - The
- The
$project
stage reshapes the output document to mirror the map-reduce's output to have two fields_id
andvalue
. The$project
sets:- the
value.count
to the size of theorders_ids
array using$size
. - the
value.qty
to theqty
field of input document. - the
value.avg
to the average number of qty per order using$divide
and$size
.
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
{ "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
{ "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
{ "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } - the
- Finally, the
$merge
writes the output to the collectionagg_alternative_3
. If an existing document has the same key_id
as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document. - Query the
agg_alternative_3
collection to verify the results:db.agg_alternative_3.find().sort( { _id: 1 } )
The operation returns the following documents:该操作返回以下文档:{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
{ "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
{ "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
{ "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
See also: 另请参阅:
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例。
For more information and examples, see the Map-Reduce page and Perform Incremental Map-Reduce
Output输出
If you set the out parameter to write the results to a collection, the mapReduce
command returns a document in the following form:
{ "result" : "map_reduce_example", "ok" : 1 }
{
"result" : <string or document>,
"timeMillis" : <int>,
"counts" : {
"input" : <int>,
"emit" : <int>,
"reduce" : <int>,
"output" : <int>
},
"ok" : <int>,
}
If you set the out parameter to output the results inline, the mapReduce
command returns a document in the following form:
{
"results" : [
{
"_id" : <key>,
"value" :<reduced or finalizedValue for key>
},
...
],
"ok" : <int>
}
{
"results" : [
{
"_id" : <key>,
"value" :<reduced or finalizedValue for key>
},
...
],
"timeMillis" : <int>,
"counts" : {
"input" : <int>,
"emit" : <int>,
"reduce" : <int>,
"output" : <int>
},
"ok" : <int>
}
mapReduce.results
-
For output written inline, an array of resulting documents. Each resulting document contains two fields:对于内联编写的输出,生成的文档的数组。每个生成的文档包含两个字段:_id
field contains thekey
value,value
field contains the reduced or finalized value for the associatedkey
.
mapReduce.timeMillis
-
Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本The command execution time in milliseconds.命令执行时间(以毫秒为单位)。
mapReduce.counts
-
Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本Various count statistics from themapReduce
command.mapReduce
命令中的各种计数统计信息。
mapReduce.counts.input
-
Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本The number of input documents, which is the number of times the
mapReduce
command called themap
function.
mapReduce.counts.emit
-
Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本The number of times the
mapReduce
command called theemit
function.
mapReduce.counts.reduce
-
Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本The number of times the
mapReduce
command called thereduce
function.
mapReduce.counts.output
-
Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本The number of output values produced.生成的输出值的数目。
mapReduce.ok
-
A value of
1
indicates themapReduce
command ran successfully. A value of0
indicates an error.
In addition to the aforementioned command specific return fields, the 除了上述特定于命令的返回字段外,db.runCommand()
includes additional information:db.runCommand()
还包括其他信息:
- for replica sets:
$clusterTime
, andoperationTime
. - for sharded clusters:
operationTime
and$clusterTime
.
See db.runCommand Response for details on these fields.有关这些字段的详细信息,请参阅db.runCommand
响应。