Docs HomeMongoDB Manual

mapReduce

Note

Aggregation Pipeline as Alternative to Map-Reduce聚合管道作为Map-Reduce的替代方案

Starting in MongoDB 5.0, map-reduce is deprecated:从MongoDB 5.0开始,不赞成使用map-reduce

  • Instead of map-reduce, you should use an aggregation pipeline. 您应该使用聚合管道,而不是map-reduceAggregation pipelines provide better performance and usability than map-reduce.聚合管道提供了比映射减少更好的性能和可用性。
  • You can rewrite map-reduce operations using aggregation pipeline stages, such as $group, $merge, and others.您可以使用聚合管道阶段(如$group$merge和其他阶段)重写映射减少操作。
  • For map-reduce operations that require custom functionality, you can use the $accumulator and $function aggregation operators, available starting in version 4.4. 对于需要自定义功能的map-reduce操作,可以使用$accumulator$function聚合运算符,这些运算符从4.4版开始提供。You can use those operators to define custom aggregation expressions in JavaScript.您可以使用这些运算符在JavaScript中定义自定义聚合表达式。

For examples of aggregation pipeline alternatives to map-reduce, see:有关映射减少的聚合管道替代方案的示例,请参阅:

Definition定义

mapReduce

The mapReduce command allows you to run map-reduce aggregation operations over a collection.

Tip

In mongosh, this command can also be run through the mapReduce() helper method.

Helper methods are convenient for mongosh users, but they may not return the same level of information as database commands. In cases where the convenience is not needed or the additional return fields are required, use the database command.

Syntax语法

Note

Starting in version 4.4, MongoDB ignores the verbose option.

Starting in version 4.2, MongoDB deprecates:

  • The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.
  • The explicit specification of nonAtomic: false option.

The command has the following syntax:

db.runCommand(
{
mapReduce: <string>,
map: <string or JavaScript>,
reduce: <string or JavaScript>,
finalize: <string or JavaScript>,
out: <output>,
query: <document>,
sort: <document>,
limit: <number>,
scope: <document>,
jsMode: <boolean>,
verbose: <boolean>,
bypassDocumentValidation: <boolean>,
collation: <document>,
maxTimeMS: <integer>,
writeConcern: <document>,
comment: <any>
}
)

Command Fields命令字段

The command takes the following fields as arguments:该命令将以下字段作为参数:

Field字段Type类型Description描述
mapReducestringThe name of the collection on which you want to perform map-reduce. This collection will be filtered using query before being processed by the map function. 要对其执行映射缩减的集合的名称。此集合将在由map函数处理之前使用query进行筛选。
Note
Views视图 do not support map-reduce operations. 不支持map-reduce操作。
mapJavaScript or StringA JavaScript function that associates or "maps" a value with a key and emits the key and value pair. You can specify the function as BSON type Javascript (BSON Type 13) or String (BSON Type 2).
For more information, see Requirements for the map Function.
reduceJavaScript or StringA JavaScript function that "reduces" to a single object all the values associated with a particular key. You can specify the function as BSON type JavaScript (BSON Type 13) or String (BSON Type 2).
For more information, see Requirements for the reduce Function.
outstring or documentSpecifies where to output the result of the map-reduce operation. You can either output to a collection or return the result inline. On a primary member of a replica set you can output either to a collection or inline, but on a secondary, only inline output is possible.
For more information, see out Options.
querydocumentOptional.可选的。Specifies the selection criteria using query operators for determining the documents input to the map function.
sortdocumentOptional.可选的。Sorts the input documents. This option is useful for optimization. For example, specify the sort key to be the same as the emit key so that there are fewer reduce operations. The sort key must be in an existing index for this collection.
limitnumberOptional.可选的。Specifies a maximum number of documents for the input into the map function.
finalizeJavaScript or StringOptional.可选的。A JavaScript function that modifies the output after the reduce function. You can specify the function as BSON type JavaScript (BSON Type 13) or String (BSON Type 2).
For more information, see Requirements for the finalize Function.
scopedocumentOptional.可选的。Specifies global variables that are accessible in the map, reduce and finalize functions.
jsModebooleanOptional.可选的。Specifies whether to convert intermediate data into BSON format between the execution of the map and reduce functions.
Defaults to false.
If false:
  • Internally, MongoDB converts the JavaScript objects emitted by the map function to BSON objects. These BSON objects are then converted back to JavaScript objects when calling the reduce function.
  • The map-reduce operation places the intermediate BSON objects in temporary, on-disk storage. This allows the map-reduce operation to execute over arbitrarily large data sets.
If true:
  • Internally, the JavaScript objects emitted during map function remain as JavaScript objects. There is no need to convert the objects for the reduce function, which can result in faster execution.
  • You can only use jsMode for result sets with fewer than 500,000 distinct key arguments to the mapper's emit() function.
verbosebooleanOptional.可选的。Specifies whether to include the timing information in the result information. Set verbose to true to include the timing information.
Defaults to false.
Starting in MongoDB 4.4, this option is ignored. The result information always excludes the timing information. You can view timing information by running explain with the mapReduce command in the "executionStats" or "allPlansExecution" verbosity modes.
bypassDocumentValidationbooleanOptional.可选的。Enables mapReduce to bypass document validation during the operation. This lets you insert documents that do not meet the validation requirements.
Note
If the output option is set to inline, no document validation occurs. If the output goes to a collection, mapReduce observes any validation rules which the collection has and does not insert any invalid documents unless the bypassDocumentValidation parameter is set to true.
collationdocumentOptional.可选的。
Specifies the collation to use for the operation.
collation allows users to specify language-specific rules for string comparison, such as rules for lettercase and accent marks.允许用户为字符串比较指定特定于语言的规则,例如字母大小写和重音标记的规则。
The collation option has the following syntax: collation选项具有以下语法:
collation: {
locale: <string>,
caseLevel: <boolean>,
caseFirst: <string>,
strength: <int>,
numericOrdering: <boolean>,
alternate: <string>,
maxVariable: <string>,
backwards: <boolean>
}
When specifying collation, the locale field is mandatory; all other collation fields are optional. 指定排序规则时,locale字段是必需的;所有其他排序规则字段都是可选的。For descriptions of the fields, see Collation Document.有关字段的说明,请参阅排序规则文档
If the collation is unspecified but the collection has a default collation (see db.createCollection()), the operation uses the collation specified for the collection.
If no collation is specified for the collection or for the operations, MongoDB uses the simple binary comparison used in prior versions for string comparisons.
You cannot specify multiple collations for an operation. For example, you cannot specify different collations per field, or if performing a find with a sort, you cannot use one collation for the find and another for the sort.
maxTimeMSnon-negative integerOptional.可选的。
Specifies a time limit in milliseconds. If you do not specify a value for maxTimeMS, operations will not time out. A value of 0 explicitly specifies the default unbounded behavior.
MongoDB terminates operations that exceed their allotted time limit using the same mechanism as db.killOp(). MongoDB only terminates an operation at one of its designated interrupt points.
writeConcerndocumentOptional.可选的。A document that expresses the write concern to use when outputting to a collection. Omit to use the default write concern.
commentanyOptional.可选的。
A user-provided comment to attach to this command. Once set, this comment appears alongside records of this command in the following locations: 要附加到此命令的用户提供的注释。设置后,此注释将与此命令的记录一起显示在以下位置: A comment can be any valid BSON type (string, integer, object, array, etc).
New in version 4.4. 4.4版新增。

Usage用法

The following is a prototype usage of the mapReduce command:

var mapFunction = function() { ... };
var reduceFunction = function(key, values) { ... };

db.runCommand(
{
mapReduce: <input-collection>,
map: mapFunction,
reduce: reduceFunction,
out: { merge: <output-collection> },
query: <query>
}
)
Note

JavaScript in MongoDB

Although mapReduce uses JavaScript, most interactions with MongoDB do not use JavaScript but use an idiomatic driver in the language of the interacting application.

Requirements for the map Function

The map function is responsible for transforming each input document into zero or more documents. It can access the variables defined in the scope parameter, and has the following prototype:

function() {
...
emit(key, value);
}

The map function has the following requirements:

  • In the map function, reference the current document as this within the function.
  • The map function should not access the database for any reason.
  • The map function should be pure, or have no impact outside of the function (i.e. side effects.)
  • The map function may optionally call emit(key,value) any number of times to create an output document associating key with value.
  • In MongoDB 4.2 and earlier, a single emit can only hold half of MongoDB's maximum BSON document size. MongoDB removes this restriction starting in version 4.4.
  • Starting in MongoDB 4.4, mapReduce no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions. The map function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13). To pass constant values which will be accessible in the map function, use the scope parameter.


    The use of JavaScript code with scope for the map function has been deprecated since version 4.2.1.

The following map function will call emit(key,value) either 0 or 1 times depending on the value of the input document's status field:

function() {
if (this.status == 'A')
emit(this.cust_id, 1);
}

The following map function may call emit(key,value) multiple times depending on the number of elements in the input document's items field:

function() {
this.items.forEach(function(item){ emit(item.sku, 1); });
}

Requirements for the reduce Function

The reduce function has the following prototype:

function(key, values) {
...
return result;
}

The reduce function exhibits the following behaviors:

Because it is possible to invoke the reduce function more than once for the same key, the following properties need to be true:

Requirements for the finalize Function

The finalize function has the following prototype:

function(key, reducedValue) {
...
return modifiedObject;
}

The finalize function receives as its arguments a key value and the reducedValue from the reduce function. Be aware that:

out Options

You can specify the following options for the out parameter:

Output to a Collection

This option outputs to a new collection, and is not available on secondary members of replica sets.

out: <collectionName>

Output to a Collection with an Action

Note

Starting in version 4.2, MongoDB deprecates:

  • The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.
  • The explicit specification of nonAtomic: false option.

This option is only available when passing a collection that already exists to out. It is not available on secondary members of replica sets.

out: { <action>: <collectionName>
[, db: <dbName>]
[, sharded: <boolean> ]
[, nonAtomic: <boolean> ] }

When you output to a collection with an action, the out has the following parameters:

  • <action>: Specify one of the following actions::指定以下操作之一:

    • replace

      Replace the contents of the <collectionName> if the collection with the <collectionName> exists.

    • merge

      Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, overwrite that existing document.

    • reduce

      Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, apply the reduce function to both the new and the existing documents and overwrite the existing document with the result.

  • db:

    Optional. The name of the database that you want the map-reduce operation to write its output. By default this will be the same database as the input collection.可选择的您希望map reduce操作写入其输出的数据库的名称。默认情况下,这将是与输入集合相同的数据库。

  • sharded:

    Note

    Starting in version 4.2, the use of the sharded option is deprecated.从4.2版本开始,不赞成使用sharded选项。

    Optional. If true and you have enabled sharding on output database, the map-reduce operation will shard the output collection using the _id field as the shard key.

    If true and collectionName is an existing unsharded collection, map-reduce fails.

  • nonAtomic:

    Note

    Starting in MongoDB 4.2, explicitly setting nonAtomic to false is deprecated.

    Optional. Specify output operation as non-atomic. This applies only to the merge and reduce output modes, which may take minutes to execute.

    By default nonAtomic is false, and the map-reduce operation locks the database during post-processing.

    If nonAtomic is true, the post-processing step prevents MongoDB from locking the database: during this time, other clients will be able to read intermediate states of the output collection.

Output Inline输出内联

Perform the map-reduce operation in memory and return the result. 在内存中执行映射缩减操作并返回结果。This option is the only available option for out on secondary members of replica sets.

out: { inline: 1 }

The result must fit within the maximum size of a BSON document.

Required Access所需访问权限

If your MongoDB deployment enforces authentication, the user executing the mapReduce command must possess the following privilege actions:

Map-reduce with {out : inline} output option:

Map-reduce with the replace action when outputting to a collection:

Map-reduce with the merge or reduce actions when outputting to a collection:

The readWrite built-in role provides the necessary permissions to perform map-reduce aggregation.

Restrictions限制

MongoDB drivers automatically set afterClusterTime for operations associated with causally consistent sessions. Starting in MongoDB 4.2, the mapReduce command no longer support afterClusterTime. As such, mapReduce cannot be associated with causally consistent sessions.

Map-Reduce Examples

In mongosh, the db.collection.mapReduce() method is a wrapper around the mapReduce command. The following examples use the db.collection.mapReduce() method:

The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. 本节中的示例包括没有自定义聚合表达式的聚合管道备选方案。For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.

Create a sample collection orders with these documents:

db.orders.insertMany([
{ _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" },
{ _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" },
{ _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"},
{ _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }
])

Return the Total Price Per Customer返回每个客户的总价

Perform the map-reduce operation on the orders collection to group by the cust_id, and calculate the sum of the price for each cust_id:orders集合执行map-reduce操作,以cust_id进行分组,并计算每个cust_id的价格之和:

  1. Define the map function to process each input document:定义映射函数以处理每个输入文档:

    • In the function, this refers to the document that the map-reduce operation is processing.在函数中,this引用Map-Reduce操作正在处理的文档。
    • The function maps the price to the cust_id for each document and emits the cust_id and price.
    var mapFunction1 = function() {
    emit(this.cust_id, this.price);
    };
  2. Define the corresponding reduce function with two arguments keyCustId and valuesPrices:

    • The valuesPrices is an array whose elements are the price values emitted by the map function and grouped by keyCustId.
    • The function reduces the valuesPrice array to the sum of its elements.该函数将valuesPrice数组的值减少为其元素的总和。
    var reduceFunction1 = function(keyCustId, valuesPrices) {
    return Array.sum(valuesPrices);
    };
  3. Perform map-reduce on all documents in the orders collection using the mapFunction1 map function and the reduceFunction1 reduce function:

    db.orders.mapReduce(
    mapFunction1,
    reduceFunction1,
    { out: "map_reduce_example" }
    )

    This operation outputs the results to a collection named map_reduce_example. If the map_reduce_example collection already exists, the operation will replace the contents with the results of this map-reduce operation.

  4. Query the map_reduce_example collection to verify the results:

    db.map_reduce_example.find().sort( { _id: 1 } )

    The operation returns these documents:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }
Aggregation Alternative聚合备选方案

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写映射减少操作,而无需定义自定义函数:

db.orders.aggregate([
{ $group: { _id: "$cust_id", value: { $sum: "$price" } } },
{ $out: "agg_alternative_1" }
])
  1. The $group stage groups by the cust_id and calculates the value field (See also $sum). The value field contains the total price for each cust_id.

    The stage output the following documents to the next stage:该阶段将以下文档输出到下一阶段:

    { "_id" : "Don Quis", "value" : 155 }
    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Busby Bee", "value" : 125 }
  2. Then, the $out writes the output to the collection agg_alternative_1. Alternatively, you could use $merge instead of $out.
  3. Query the agg_alternative_1 collection to verify the results:

    db.agg_alternative_1.find().sort( { _id: 1 } )

    The operation returns the following documents:该操作返回以下文档:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }
Tip

See also: 另请参阅:

For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例

Calculate Order and Total Quantity with Average Quantity Per Item使用每个项目的平均数量计算订单和总数量

In the following example, you will see a map-reduce operation on the orders collection for all documents that have an ord_date value greater than or equal to 2020-03-01.在以下示例中,您将看到orders集合上的映射减少操作,该操作适用于ord_date值大于或等于2020-03-01的所有文档。

The operation in the example:示例中的操作:

  1. Groups by the item.sku field, and calculates the number of orders and the total quantity ordered for each sku.item.sku字段分组,并计算每个sku的订单数量和订购总量。
  2. Calculates the average quantity per order for each sku value and merges the results into the output collection.计算每个sku值的每个订单的平均数量,并将结果合并到输出集合中。

When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.合并结果时,如果现有文档与新结果具有相同的键,则该操作将覆盖现有文档。如果没有具有相同键的现有文档,则操作将插入该文档。

Example steps:示例步骤:

  1. Define the map function to process each input document:定义映射函数以处理每个输入文档:

    • In the function, this refers to the document that the map-reduce operation is processing.在函数中,this指map-reduce操作正在处理的文档。
    • For each item, the function associates the sku with a new object value that contains the count of 1 and the item qty for the order and emits the sku (stored in the key) and the value.
     var mapFunction2 = function() {
    for (var idx = 0; idx < this.items.length; idx++) {
    var key = this.items[idx].sku;
    var value = { count: 1, qty: this.items[idx].qty };

    emit(key, value);
    }
    };
  2. Define the corresponding reduce function with two arguments keySKU and countObjVals:

    • countObjVals is an array whose elements are the objects mapped to the grouped keySKU values passed by map function to the reducer function.
    • The function reduces the countObjVals array to a single object reducedValue that contains the count and the qty fields.
    • In reducedVal, the count field contains the sum of the count fields from the individual array elements, and the qty field contains the sum of the qty fields from the individual array elements.
    var reduceFunction2 = function(keySKU, countObjVals) {
    reducedVal = { count: 0, qty: 0 };

    for (var idx = 0; idx < countObjVals.length; idx++) {
    reducedVal.count += countObjVals[idx].count;
    reducedVal.qty += countObjVals[idx].qty;
    }

    return reducedVal;
    };
  3. Define a finalize function with two arguments key and reducedVal. The function modifies the reducedVal object to add a computed field named avg and returns the modified object:

    var finalizeFunction2 = function (key, reducedVal) {
    reducedVal.avg = reducedVal.qty/reducedVal.count;
    return reducedVal;
    };
  4. Perform the map-reduce operation on the orders collection using the mapFunction2, reduceFunction2, and finalizeFunction2 functions:

    db.orders.mapReduce(
    mapFunction2,
    reduceFunction2,
    {
    out: { merge: "map_reduce_example2" },
    query: { ord_date: { $gte: new Date("2020-03-01") } },
    finalize: finalizeFunction2
    }
    );

    This operation uses the query field to select only those documents with ord_date greater than or equal to new Date("2020-03-01"). Then it outputs the results to a collection map_reduce_example2.

    If the map_reduce_example2 collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. That is, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.

  5. Query the map_reduce_example2 collection to verify the results:查询map_reduce_example2集合以验证结果:

    db.map_reduce_example2.find().sort( { _id: 1 } )

    The operation returns these documents:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Aggregation Alternative聚合备选方案

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写映射减少操作,而无需定义自定义函数:

db.orders.aggregate( [
{ $match: { ord_date: { $gte: new Date("2020-03-01") } } },
{ $unwind: "$items" },
{ $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } } },
{ $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } },
{ $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } }
] )
  1. The $match stage selects only those documents with ord_date greater than or equal to new Date("2020-03-01").$match阶段仅选择ord_date大于或等于new Date("2020-03-01")的文档。
  2. The $unwind stage breaks down the document by the items array field to output a document for each array element. For example:例如:

    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    ...
  3. The $group stage groups by the items.sku, calculating for each sku:

    • The qty field. The qty field contains the
      total qty ordered per each items.sku (See $sum).
    • The orders_ids array. The orders_ids field contains an
      array of distinct order _id's for the items.sku (See $addToSet).
    { "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
    { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
    { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
    { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
    { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }
  4. The $project stage reshapes the output document to mirror the map-reduce's output to have two fields _id and value. The $project sets:
  5. The $unwind stage breaks down the document by the items array field to output a document for each array element. For example:例如:

    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    ...
  6. The $group stage groups by the items.sku, calculating for each sku:

    • The qty field. The qty field contains the total qty ordered per each items.sku using $sum.
    • The orders_ids array. The orders_ids field contains an array of distinct order _id's for the items.sku using $addToSet.
    { "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
    { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
    { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
    { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
    { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }
  7. The $project stage reshapes the output document to mirror the map-reduce's output to have two fields _id and value. The $project sets:

    • the value.count to the size of the orders_ids array using $size.
    • the value.qty to the qty field of input document.
    • the value.avg to the average number of qty per order using $divide and $size.
    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
  8. Finally, the $merge writes the output to the collection agg_alternative_3. If an existing document has the same key _id as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.
  9. Query the agg_alternative_3 collection to verify the results:

    db.agg_alternative_3.find().sort( { _id: 1 } )

    The operation returns the following documents:该操作返回以下文档:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Tip

See also: 另请参阅:

For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例

For more information and examples, see the Map-Reduce page and Perform Incremental Map-Reduce

Output输出

If you set the out parameter to write the results to a collection, the mapReduce command returns a document in the following form:

{ "result" : "map_reduce_example", "ok" : 1 }
{
"result" : <string or document>,
"timeMillis" : <int>,
"counts" : {
"input" : <int>,
"emit" : <int>,
"reduce" : <int>,
"output" : <int>
},
"ok" : <int>,
}

If you set the out parameter to output the results inline, the mapReduce command returns a document in the following form:

{
"results" : [
{
"_id" : <key>,
"value" :<reduced or finalizedValue for key>
},
...
],
"ok" : <int>
}
{
"results" : [
{
"_id" : <key>,
"value" :<reduced or finalizedValue for key>
},
...
],
"timeMillis" : <int>,
"counts" : {
"input" : <int>,
"emit" : <int>,
"reduce" : <int>,
"output" : <int>
},
"ok" : <int>
}
mapReduce.result

For output sent to a collection, this value is either:对于发送到集合的输出,此值为:

  • a string for the collection name if out did not specify the database name, or
  • a document with both db and collection fields if out specified both a database and collection name.
mapReduce.results

For output written inline, an array of resulting documents. Each resulting document contains two fields:对于内联编写的输出,生成的文档的数组。每个生成的文档包含两个字段:

  • _id field contains the key value,
  • value field contains the reduced or finalized value for the associated key.
mapReduce.timeMillis

Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本

The command execution time in milliseconds.命令执行时间(以毫秒为单位)。

mapReduce.counts

Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本

Various count statistics from the mapReduce command.mapReduce命令中的各种计数统计信息。

mapReduce.counts.input

Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本

The number of input documents, which is the number of times the mapReduce command called the map function.

mapReduce.counts.emit

Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本

The number of times the mapReduce command called the emit function.

mapReduce.counts.reduce

Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本

The number of times the mapReduce command called the reduce function.

mapReduce.counts.output

Available for MongoDB 4.2 and earlier only仅适用于MongoDB 4.2及更早版本

The number of output values produced.生成的输出值的数目。

mapReduce.ok

A value of 1 indicates the mapReduce command ran successfully. A value of 0 indicates an error.

In addition to the aforementioned command specific return fields, the db.runCommand() includes additional information:除了上述特定于命令的返回字段外,db.runCommand()还包括其他信息:

  • for replica sets: $clusterTime, and operationTime.
  • for sharded clusters: operationTime and $clusterTime.

See db.runCommand Response for details on these fields.有关这些字段的详细信息,请参阅db.runCommand响应

Additional Information附加信息