db.collection.mapReduce()
On this page本页内容
Aggregation Pipeline as Alternative to Map-Reduce聚合管道作为Map-Reduce的替代方案
Starting in MongoDB 5.0, map-reduce is deprecated:从MongoDB 5.0开始,不赞成使用map-reduce:
Instead of map-reduce, you should use an aggregation pipeline. Aggregation pipelines provide better performance and usability than map-reduce.您应该使用聚合管道,而不是map-reduce。聚合管道提供了比映射减少更好的性能和可用性。You can rewrite map-reduce operations using aggregation pipeline stages, such as您可以使用聚合管道阶段(如$group,$merge, and others.$group、$merge和其他阶段)重写映射减少操作。For map-reduce operations that require custom functionality, you can use the对于需要自定义函数的map-reduce操作,可以使用$accumulatorand$functionaggregation operators, available starting in version 4.4. You can use those operators to define custom aggregation expressions in JavaScript.$accumulator和$function聚合运算符,这些运算符从4.4版开始提供。您可以使用这些运算符在JavaScript中定义自定义聚合表达式。
For examples of aggregation pipeline alternatives to map-reduce, see:有关映射减少的聚合管道替代方案的示例,请参阅:
db.collection.mapReduce(map,reduce, { <options> })- Important
mongosh Method
This page documents a本页记录了一个mongoshmethod.mongosh方法。This is not the documentation for database commands or language-specific drivers, such as Node.js.这不是数据库命令或特定语言驱动程序(如Node.js)的文档。For the database command, see the有关数据库命令,请参阅mapReducecommand.mapReduce命令。For MongoDB API drivers, refer to the language-specific MongoDB driver documentation.有关MongoDB API驱动程序,请参阅特定语言的MongoDB驱动程序文档。For the legacy对于遗留的mongoshell documentation, refer to the documentation for the corresponding MongoDB Server release:mongoshell文档,请参阅相应MongoDB Server版本的文档:
Syntax语法
Starting in version 4.4, MongoDB ignores the verbose option.从4.4版本开始,MongoDB会忽略verbose选项。
Starting in version 4.2, MongoDB deprecates:从4.2版本开始,MongoDB反对:
The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce.用于创建新的分片集合的map-reduce选项,以及使用sharded选项进行map-reduce。To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.若要输出到分片集合,请首先创建分片集合。MongoDB 4.2也反对替换现有的分片集合。The explicit specification of nonAtomic: false option.nonAtomic: false选项的显式规范。
db.collection.mapReduce() has the following syntax:具有以下语法:
db.collection.mapReduce(
<map>,
<reduce>,
{
out: <collection>,
query: <document>,
sort: <document>,
limit: <number>,
finalize: <function>,
scope: <document>,
jsMode: <boolean>,
verbose: <boolean>,
bypassDocumentValidation: <boolean>
}
)
db.collection.mapReduce() takes the following parameters:采用以下参数:
map | JavaScript or String | value with a key and emits the key and value pair. valuekey关联或“映射”,并发出键和值对。map函数的要求。 |
reduce | JavaScript or String | values associated with a particular key. values“减少”为一个对象。reduce函数的要求。 |
options | document | db.collection.mapReduce().db.collection.mapReduce()指定附加参数的文档。 |
The following table describes additional arguments that 下表描述了db.collection.mapReduce() can accept.db.collection.mapReduce()可以接受的其他参数。
out | string or document | inline output.out选项。 |
query | document | map function. |
sort | document | |
limit | number | map function.map函数输入的最大文档数。 |
finalize | Javascript or String | reduce function. reduce函数之后的输出。finalize函数的要求。 |
scope | document | map, reduce and finalize functions.map、reduce和finalize函数中可访问的全局变量。 |
jsMode | boolean | map and reduce functions.map和reduce函数之间将中间数据转换为BSON格式。false.false。false:false:
true:true:
|
verbose | boolean | timing information in the result information. Set verbose to true to include the timing information.timing信息。将verbose设置为true以包含timing信息。false.false。timing information. timing信息。db.collection.explain() with db.collection.mapReduce() in the "executionStats" or "allPlansExecution" verbosity modes. "executionStats"或"allPlansExecution" verbosity模式下运行db.collection.explain()和db.collection.mapReduce()来查看时间信息。 |
collation | document | Collation允许用户为字符串比较指定特定于语言的规则,例如大小写和重音标记的规则。collation: {
locale field is mandatory; all other collation fields are optional. For descriptions of the fields, see Collation Document.locale字段是必需的;所有其他排序规则字段都是可选的。有关字段的说明,请参阅排序规则文档。db.createCollection()), the operation uses the collation specified for the collection.db.createCollection()),则操作将使用为集合指定的排序规则。 |
bypassDocumentValidation | boolean | mapReduce to bypass document validation during the operation. mapReduce在操作过程中绕过文档验证。 |
map reduce操作和map-reduce operations and $where operator expressions cannot access certain global functions or properties, such as db, that are available in mongosh.$where运算符表达式无法访问mongosh中可用的某些全局函数或属性,如db。
The following JavaScript functions and properties are available to 以下JavaScript函数和属性可用于map-reduce操作和map-reduce operations and $where operator expressions:$where运算符表达式:
argsMaxKeyMinKey | assert()BinData()DBPointer()DBRef()doassert()emit()gc()HexData()hex_md5()isNumber()isObject()ISODate()isString() | Map()MD5()NumberInt()NumberLong()ObjectId()print()printjson()printjsononeline()sleep()Timestamp()tojson()tojsononeline()tojsonObject()UUID()version() |
Requirements for the map Functionmap函数的要求
map FunctionThe map function is responsible for transforming each input document into zero or more documents. map函数负责将每个输入文档转换为零个或多个文档。It can access the variables defined in the 它可以访问scope parameter, and has the following prototype:scope参数中定义的变量,并具有以下原型:
function() {
...
emit(key, value);
}
The map function has the following requirements:map函数具有以下要求:
In the在mapfunction, reference the current document asthiswithin the function.map函数中,将当前文档引用为函数中的this。Themapfunction should not access the database for any reason.map函数不应出于任何原因访问数据库。Themapfunction should be pure, or have no impact outside of the function (i.e. side effects.)map函数应该是纯的,或者在函数之外没有影响(即副作用)Themapfunction may optionally callemit(key,value)any number of times to create an output document associatingkeywithvalue.map函数可以任意多次调用emit(key,value)来创建将key与value关联的输出文档。In MongoDB 4.2 and earlier, a single emit can only hold half of MongoDB's maximum BSON document size. MongoDB removes this restriction starting in version 4.4.在MongoDB 4.2及更早版本中,单个emit只能容纳MongoDB最大BSON文档大小的一半。MongoDB从4.4版本开始删除了这个限制。Starting in MongoDB 4.4,从MongoDB 4.4开始,mapReduceno longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions.mapReduce不再支持不推荐使用的BSON Type JavaScript代码,其函数具有作用域(BSON Type 15)。Themapfunction must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13).map函数必须是BSON Type String(BSON Type 2)或BSON Type JavaScript(BSON Type13)。To pass constant values which will be accessible in the要传递mapfunction, use thescopeparameter.map函数中可访问的常数值,请使用scope参数。
The use of JavaScript code with scope for the自4.2.1版本以来,一直不赞成使用带有mapfunction has been deprecated since version 4.2.1.map函数作用域的JavaScript代码。
The following 以下map function will call emit(key,value) either 0 or 1 times depending on the value of the input document's status field:map函数将根据输入文档的status字段的值调用emit(key,value)0或1次:
function() {
if (this.status == 'A')
emit(this.cust_id, 1);
}
The following 根据输入文档map function may call emit(key,value) multiple times depending on the number of elements in the input document's items field:items字段中元素的数量,以下map函数可能多次调用emit(key,value):
function() {
this.items.forEach(function(item){ emit(item.sku, 1); });
}
Requirements for the reduce Functionreduce函数的要求
reduce FunctionThe reduce function has the following prototype:reduce函数具有以下原型:
function(key, values) {
...
return result;
}
The reduce function exhibits the following behaviors:reduce函数表现出以下行为:
Thereducefunction should not access the database, even to perform read operations.reduce函数不应该访问数据库,甚至不应该执行读取操作。Thereducefunction should not affect the outside system.reduce函数不应影响外部系统。MongoDB can invoke theMongoDB可以为同一个键多次调用reducefunction more than once for the same key.reduce函数。In this case, the previous output from the在这种情况下,该键的reducefunction for that key will become one of the input values to the nextreducefunction invocation for that key.reduce函数的上一个输出将成为该键的下一个reduce函数调用的输入值之一。Thereducefunction can access the variables defined in thescopeparameter.reduce函数可以访问scope参数中定义的变量。The inputs toreducemust not be larger than half of MongoDB's maximum BSON document size.reduce的输入不得大于MongoDB最大BSON文档大小的一半。This requirement may be violated when large documents are returned and then joined together in subsequent当返回大型文档,然后在后续的reducesteps.reduce步骤中将其连接在一起时,可能会违反此要求。Starting in MongoDB 4.4,从MongoDB 4.4开始,mapReduceno longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions.mapReduce不再支持不推荐使用的BSON Type JavaScript代码,其函数具有作用域(BSON Type 15)。Thereducefunction must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13).reduce函数必须是BSON Type String(BSON Type 2)或BSON Type JavaScript(BSON Type13)。To pass constant values which will be accessible in the要传递reducefunction, use thescopeparameter.reduce函数中可访问的常数值,请使用scope参数。
The use of JavaScript code with scope for the自4.2.1版本以来,一直不赞成使用具有reducefunction has been deprecated since version 4.2.1.reduce函数作用域的JavaScript代码。
Because it is possible to invoke the 由于同一个键可以多次调用reduce function more than once for the same key, the following properties need to be true:reduce函数,因此以下属性必须为true:
the type of the return object must be identical to the type of the返回对象的类型必须与valueemitted by themapfunction.map函数发出的value的类型相同。thereducefunction must be associative. The following statement must be true:reduce函数必须是关联的。以下陈述必须正确:reduce(key, [ C, reduce(key, [ A, B ]) ] ) == reduce( key, [ C, A, B ] )
thereducefunction must be idempotent.reduce函数必须是幂等的。Ensure that the following statement is true:确保以下陈述正确无误:reduce( key, [ reduce(key, valuesArray) ] ) == reduce( key, valuesArray )
thereducefunction should be commutative: that is, the order of the elements in thevaluesArrayshould not affect the output of thereducefunction, so that the following statement is true:reduce函数应该是可交换的:也就是说,valuesArray中元素的顺序不应该影响reduce函数的输出,因此以下语句为true:reduce( key, [ A, B ] ) == reduce( key, [ B, A ] )
out Options选项
You can specify the following options for the 可以为out parameter:out参数指定以下选项:
Output to a Collection输出到集合
This option outputs to a new collection, and is not available on secondary members of replica sets.此选项输出到新集合,在副本集的辅助成员上不可用。
out: <collectionName>
Output to a Collection with an Action输出到具有操作的集合
Starting in version 4.2, MongoDB deprecates:从4.2版本开始,MongoDB反对:
The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.用于创建新的分片集合的贴图减少选项,以及使用sharded选项进行贴图减少。若要输出到分片集合,请首先创建分片集合。MongoDB 4.2也反对替换现有的分片集合。The explicit specification of nonAtomic: false option.nonAtomic: false选项的显式规范。
This option is only available when passing a collection that already exists to 此选项仅在将已存在的集合传递给out. It is not available on secondary members of replica sets.out时可用。它在副本集的辅助成员上不可用。
out: { <action>: <collectionName>
[, db: <dbName>]
[, sharded: <boolean> ]
[, nonAtomic: <boolean> ] }
When you output to a collection with an action, the 当输出到具有操作的集合时,out has the following parameters:out具有以下参数:
<action>: Specify one of the following actions::指定以下操作之一:replaceReplace the contents of the如果存在具有<collectionName>if the collection with the<collectionName>exists.<collectionName>的集合,请替换<collectionName>的内容。mergeMerge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, overwrite that existing document.如果输出集合已存在,则将新结果与现有结果合并。如果现有文档与新结果具有相同的键,请覆盖该现有文档。reduceMerge the new result with the existing result if the output collection already exists.如果输出集合已存在,则将新结果与现有结果合并。If an existing document has the same key as the new result, apply the如果现有文档与新结果具有相同的键,请对新文档和现有文档应用reducefunction to both the new and the existing documents and overwrite the existing document with the result.reduce函数,并用结果覆盖现有文档。
db:Optional.可选的。The name of the database that you want the map-reduce operation to write its output.您希望map-reduce操作写入其输出的数据库的名称。By default this will be the same database as the input collection.默认情况下,这将是与输入集合相同的数据库。sharded:NoteStarting in version 4.2, the use of the从4.2版本开始,不赞成使用shardedoption is deprecated.sharded选项。Optional.可选的。If如果为trueand you have enabled sharding on output database, the map-reduce operation will shard the output collection using the_idfield as the shard key.true,并且您已经在输出数据库上启用了分片,则map-reduce操作将使用_id字段作为分片键对输出集合进行分片。If如果为trueandcollectionNameis an existing unsharded collection, map-reduce fails.true并且collectionName是现有的未排序集合,则map reduce将失败。nonAtomic:NoteStarting in MongoDB 4.2, explicitly setting从MongoDB 4.2开始,不赞成将nonAtomictofalseis deprecated.nonAtomic显式设置为false。Optional.可选的。Specify output operation as non-atomic.将输出操作指定为非原子操作。This applies only to the这只适用于mergeandreduceoutput modes, which may take minutes to execute.merge和reduce输出模式,执行这些模式可能需要几分钟时间。By default默认情况下,nonAtomicisfalse, and the map-reduce operation locks the database during post-processing.nonAtomic为false,map-reduce操作会在后处理过程中锁定数据库。If如果nonAtomicistrue, the post-processing step prevents MongoDB from locking the database: during this time, other clients will be able to read intermediate states of the output collection.nonAtomic为true,后期处理步骤将阻止MongoDB锁定数据库:在此期间,其他客户端将能够读取输出集合的中间状态。
Output Inline输出内联
Perform the map-reduce operation in memory and return the result. 在内存中执行映射缩减操作并返回结果。This option is the only available option for 此选项是复制副本集的辅助成员的out on secondary members of replica sets.out的唯一可用的选项。
out: { inline: 1 }
The result must fit within the maximum size of a BSON document.结果必须在BSON文档的最大大小范围内。
Requirements for the finalize Functionfinalize函数的要求
finalize FunctionThe finalize function has the following prototype:finalize函数具有以下原型:
function(key, reducedValue) {
...
return modifiedObject;
}
The finalize function receives as its arguments a key value and the reducedValue from the reduce function. Be aware that:finalize函数从reduce函数接收一个key值和reducedValue作为其参数。请注意:
Thefinalizefunction should not access the database for any reason.finalize函数不应出于任何原因访问数据库。Thefinalizefunction should be pure, or have no impact outside of the function (i.e. side effects.)finalize函数应该是纯函数,或者在函数之外没有影响(即副作用)Thefinalizefunction can access the variables defined in thescopeparameter.finalize函数可以访问scope参数中定义的变量。Starting in MongoDB 4.4,从MongoDB 4.4开始,mapReduceno longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions.mapReduce不再支持不推荐使用的BSON Type JavaScript代码,其函数具有作用域(BSON Type 15)。Thefinalizefunction must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13).finalize函数必须是BSON Type String(BSON Type 2)或BSON Type JavaScript(BSON Type13)。To pass constant values which will be accessible in the要传递可在finalizefunction, use thescopeparameter.finalize函数中访问的常数值,请使用scope参数。
The use of JavaScript code with scope for the自4.2.1版本以来,一直不赞成使用具有finalizefunction has been deprecated since version 4.2.1.finalize函数作用域的JavaScript代码。
Map-Reduce Examples
The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. 本节中的示例包括没有自定义聚合表达式的聚合管道备选方案。For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义表达式的备选方案,请参阅Map-Reduce到聚合管道转换示例。
Create a sample collection 使用以下文档创建示例集合orders with these documents:orders:
db.orders.insertMany([
{ _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" },
{ _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" },
{ _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"},
{ _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }
])
Return the Total Price Per Customer返回每个客户的总价
Perform the map-reduce operation on the 对orders collection to group by the cust_id, and calculate the sum of the price for each cust_id:orders集合执行map-reduce操作,以cust_id进行分组,并计算每个cust_id的price之和:
Define the map function to process each input document:定义映射函数以处理每个输入文档:In the function,在函数中,thisrefers to the document that the map-reduce operation is processing.this引用map-reduce操作正在处理的文档。The function maps the该函数将每个文档的priceto thecust_idfor each document and emits thecust_idandprice.price映射到cust_id,并发出cust_id和price。
var mapFunction1 = function() {
emit(this.cust_id, this.price);
};Define the corresponding reduce function with two arguments使用两个参数keyCustIdandvaluesPrices:keyCustId和valuesPrices定义相应的reduce函数:ThevaluesPricesis an array whose elements are thepricevalues emitted by the map function and grouped bykeyCustId.valuesPrices是一个数组,其元素是map函数发出的price值,并按keyCustId分组。The function reduces the该函数将valuesPricearray to the sum of its elements.valuesPrice数组的值减少为其元素的总和。
var reduceFunction1 = function(keyCustId, valuesPrices) {
return Array.sum(valuesPrices);
};Perform map-reduce on all documents in the使用orderscollection using themapFunction1map function and thereduceFunction1reduce function:mapFunction1map函数和reduceFunction1reduce函数对订单集合中的所有文档执行map-reduce:db.orders.mapReduce(
mapFunction1,
reduceFunction1,
{ out: "map_reduce_example" }
)This operation outputs the results to a collection named此操作将结果输出到名为map_reduce_example.map_reduce_example的集合。If the如果map_reduce_examplecollection already exists, the operation will replace the contents with the results of this map-reduce operation.map_reduce_example集合已经存在,则该操作将用此map-reduce操作的结果替换内容。Query the查询map_reduce_examplecollection to verify the results:map_reduce_example集合以验证结果:db.map_reduce_example.find().sort( { _id: 1 } )
The operation returns these documents:操作将返回以下文档:{ "_id" : "Ant O. Knee", "value" : 95 }
{ "_id" : "Busby Bee", "value" : 125 }
{ "_id" : "Cam Elot", "value" : 60 }
{ "_id" : "Don Quis", "value" : 155 }
Aggregation Alternative聚合备选方案
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写映射减少操作,而无需定义自定义函数:
db.orders.aggregate([
{ $group: { _id: "$cust_id", value: { $sum: "$price" } } },
{ $out: "agg_alternative_1" }
])
The$groupstage groups by thecust_idand calculates thevaluefield (See also$sum).$group阶段根据cust_id进行分组,并计算value字段(另请参见$sum)。Thevaluefield contains the totalpricefor eachcust_id.value字段包含每个cust_id的总价。The stage output the following documents to the next stage:该阶段将以下文档输出到下一阶段:{ "_id" : "Don Quis", "value" : 155 }
{ "_id" : "Ant O. Knee", "value" : 95 }
{ "_id" : "Cam Elot", "value" : 60 }
{ "_id" : "Busby Bee", "value" : 125 }Then, the然后,$outwrites the output to the collectionagg_alternative_1.$out将输出写入集合agg_alternative_1。Alternatively, you could use或者,您可以使用$mergeinstead of$out.$merge而不是$out。Query the查询agg_alternative_1collection to verify the results:agg_alternative_1集合以验证结果:db.agg_alternative_1.find().sort( { _id: 1 } )
The operation returns the following documents:该操作返回以下文档:{ "_id" : "Ant O. Knee", "value" : 95 }
{ "_id" : "Busby Bee", "value" : 125 }
{ "_id" : "Cam Elot", "value" : 60 }
{ "_id" : "Don Quis", "value" : 155 }
See also: 另请参阅:
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例。
Calculate Order and Total Quantity with Average Quantity Per Item使用每个项目的平均数量计算订单和总数量
In the following example, you will see a map-reduce operation on the 在以下示例中,您将看到orders collection for all documents that have an ord_date value greater than or equal to 2020-03-01.orders集合上的映射减少操作,该操作适用于ord_date值大于或等于2020-03-01的所有文档。
The operation in the example:示例中的操作:
Groups by the按item.skufield, and calculates the number of orders and the total quantity ordered for eachsku.item.sku字段分组,并计算每个sku的订单数量和订购总量。Calculates the average quantity per order for each计算每个skuvalue and merges the results into the output collection.sku值的每个订单的平均数量,并将结果合并到输出集合中。
When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. 合并结果时,如果现有文档与新结果具有相同的键,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则操作将插入该文档。
Example steps:示例步骤:
Define the map function to process each input document:定义映射函数以处理每个输入文档:In the function,在函数中,thisrefers to the document that the map-reduce operation is processing.this引用map-reduce操作正在处理的文档。For each item, the function associates the对于每个项目,该函数将skuwith a new objectvaluethat contains thecountof1and the itemqtyfor the order and emits thesku(stored in thekey) and thevalue.sku与一个新的对象value相关联,该值包含订单的count1和项目qty,并发出sku(存储在key中)和value。
var mapFunction2 = function() {
for (var idx = 0; idx < this.items.length; idx++) {
var key = this.items[idx].sku;
var value = { count: 1, qty: this.items[idx].qty };
emit(key, value);
}
};Define the corresponding reduce function with two arguments使用两个参数keySKUandcountObjVals:keySKU和countObjVals定义相应的reduce函数:countObjValsis an array whose elements are the objects mapped to the grouped是一个数组,其元素是映射到由map函数传递给reducer函数的分组keySKUvalues passed by map function to the reducer function.keySKU值的对象。The function reduces the该函数将countObjValsarray to a single objectreducedValuethat contains thecountand theqtyfields.countObjVals数组缩减为单个对象reducedValue,该对象包含count和qty字段。In在reducedVal, thecountfield contains the sum of thecountfields from the individual array elements, and theqtyfield contains the sum of theqtyfields from the individual array elements.reducedVal中,count字段包含单个数组元素的count字段之和,而qty字段包含单个数组元素的qty字段之和。
var reduceFunction2 = function(keySKU, countObjVals) {
reducedVal = { count: 0, qty: 0 };
for (var idx = 0; idx < countObjVals.length; idx++) {
reducedVal.count += countObjVals[idx].count;
reducedVal.qty += countObjVals[idx].qty;
}
return reducedVal;
};Define a finalize function with two arguments定义一个带有两个参数keyandreducedVal.key和reducedVal的finalize函数。The function modifies the函数修改reducedValobject to add a computed field namedavgand returns the modified object:reducedVal对象以添加名为avg的计算字段,并返回修改后的对象:var finalizeFunction2 = function (key, reducedVal) {
reducedVal.avg = reducedVal.qty/reducedVal.count;
return reducedVal;
};Perform the map-reduce operation on the使用orderscollection using themapFunction2,reduceFunction2, andfinalizeFunction2functions:mapFunction2、reduceFunction2和finalizeFunction2函数对订单集合执行map-reduce操作:db.orders.mapReduce(
mapFunction2,
reduceFunction2,
{
out: { merge: "map_reduce_example2" },
query: { ord_date: { $gte: new Date("2020-03-01") } },
finalize: finalizeFunction2
}
);This operation uses the此操作使用queryfield to select only those documents withord_dategreater than or equal tonew Date("2020-03-01"). Then it outputs the results to a collectionmap_reduce_example2.query字段仅选择ord_date大于或等于new Date("2020-03-01")的文档。然后,它将结果输出到集合map_reduce_example2。If the如果map_reduce_example2collection already exists, the operation will merge the existing contents with the results of this map-reduce operation.map_reduce_example2集合已经存在,则该操作将把现有内容与此map-reduce操作的结果合并。That is, if an existing document has the same key as the new result, the operation overwrites the existing document.也就是说,如果现有文档与新结果具有相同的键,则操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则操作将插入该文档。Query the查询map_reduce_example2collection to verify the results:map_reduce_example2集合以验证结果:db.map_reduce_example2.find().sort( { _id: 1 } )
The operation returns these documents:操作将返回以下文档:{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
{ "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
{ "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
{ "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Aggregation Alternative聚合备选方案
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写映射减少操作,而无需定义自定义函数:
db.orders.aggregate( [
{ $match: { ord_date: { $gte: new Date("2020-03-01") } } },
{ $unwind: "$items" },
{ $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } } },
{ $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } },
{ $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } }
] )
The$matchstage selects only those documents withord_dategreater than or equal tonew Date("2020-03-01").$match阶段仅选择ord_date大于或等于new Date("2020-03-01")的文档。The$unwindstage breaks down the document by theitemsarray field to output a document for each array element.$unwind阶段按items数组字段对文档进行分解,为每个数组元素输出一个文档。For example:例如:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
...The$groupstage groups by theitems.sku, calculating for each sku:$group阶段按items.sku分组,为每个sku计算:{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
{ "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
{ "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
{ "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
{ "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }The$projectstage reshapes the output document to mirror the map-reduce's output to have two fields_idandvalue.$project阶段重塑输出文档,以镜像map-reduce的输出,使其具有两个字段_id和value。The$projectsets:$project设置:The$unwindstage breaks down the document by theitemsarray field to output a document for each array element.$unwind阶段按items数组字段对文档进行分解,为每个数组元素输出一个文档。For example:例如:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
...The$groupstage groups by theitems.sku, calculating for each sku:$group阶段按items.sku分组,为每个sku计算:Theqtyfield. Theqtyfield contains the totalqtyordered per eachitems.skuusing$sum.qty字段。qty字段包含使用$sum为每个items.sku订购的总数量。Theorders_idsarray. Theorders_idsfield contains an array of distinct order_id's for theitems.skuusing$addToSet.orders_ids数组。orders_ids字段包含一个使用$addToSet的items.sku的不同order_id的数组。
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
{ "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
{ "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
{ "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
{ "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }The$projectstage reshapes the output document to mirror the map-reduce's output to have two fields_idandvalue.$project阶段重塑输出文档,以镜像map-reduce的输出,使其具有两个字段_id和value。The$projectsets:$project设置:the使用value.countto the size of theorders_idsarray using$size.$size将value.count设置为orders_ids数组的大小。the输入单据的value.qtyto theqtyfield of input document.qty字段的value.qty。thevalue.avgto the average number of qty per order using$divideand$size.value.avg是使用$divide和$size的每个订单的平均数量。
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
{ "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
{ "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
{ "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }Finally, the最后,$mergewrites the output to the collectionagg_alternative_3.$merge将输出写入集合agg_alternative_3。If an existing document has the same key如果现有文档具有与新结果相同的键_idas the new result, the operation overwrites the existing document._id,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则操作将插入该文档。Query the查询agg_alternative_3collection to verify the results:agg_alternative_3集合以验证结果:db.agg_alternative_3.find().sort( { _id: 1 } )
The operation returns the following documents:该操作返回以下文档:{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
{ "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
{ "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
{ "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
See also: 另请参阅:
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例。
Output输出
The output of the db.collection.mapReduce() method is identical to that of the mapReduce command. db.collection.mapReduce()方法的输出与mapReduce命令的输出相同。See the Output section of the 有关mapReduce command for information on the db.collection.mapReduce() output.db.collection.mapReduce()输出的信息,请参阅mapReduce命令的Output部分。
Restrictions限制
MongoDB drivers automatically set afterClusterTime for operations associated with causally consistent sessions. MongoDB驱动程序会为与因果一致会话相关联的操作自动设置afterClusterTime。Starting in MongoDB 4.2, the 从MongoDB 4.2开始,db.collection.mapReduce() no longer support afterClusterTime. As such, db.collection.mapReduce() cannot be associatd with causally consistent sessions.db.collection.mapReduce()不再支持afterClusterTime。因此,db.collection.mapReduce()不能与因果一致的会话相关联。