db.collection.mapReduce()
On this page本页内容
Aggregation Pipeline as Alternative to Map-Reduce聚合管道作为Map-Reduce的替代方案
Starting in MongoDB 5.0, map-reduce is deprecated:从MongoDB 5.0开始,不赞成使用map-reduce:
Instead of map-reduce, you should use an aggregation pipeline. Aggregation pipelines provide better performance and usability than map-reduce.您应该使用聚合管道,而不是map-reduce。聚合管道提供了比映射减少更好的性能和可用性。You can rewrite map-reduce operations using aggregation pipeline stages, such as您可以使用聚合管道阶段(如$group
,$merge
, and others.$group
、$merge
和其他阶段)重写映射减少操作。For map-reduce operations that require custom functionality, you can use the对于需要自定义函数的map-reduce操作,可以使用$accumulator
and$function
aggregation operators, available starting in version 4.4. You can use those operators to define custom aggregation expressions in JavaScript.$accumulator
和$function
聚合运算符,这些运算符从4.4版开始提供。您可以使用这些运算符在JavaScript中定义自定义聚合表达式。
For examples of aggregation pipeline alternatives to map-reduce, see:有关映射减少的聚合管道替代方案的示例,请参阅:
db.collection.mapReduce(map,reduce, { <options> })
- Important
mongosh Method
This page documents a本页记录了一个mongosh
method.mongosh
方法。This is not the documentation for database commands or language-specific drivers, such as Node.js.这不是数据库命令或特定语言驱动程序(如Node.js)的文档。For the database command, see the有关数据库命令,请参阅mapReduce
command.mapReduce
命令。For MongoDB API drivers, refer to the language-specific MongoDB driver documentation.有关MongoDB API驱动程序,请参阅特定语言的MongoDB驱动程序文档。For the legacy对于遗留的mongo
shell documentation, refer to the documentation for the corresponding MongoDB Server release:mongo
shell文档,请参阅相应MongoDB Server版本的文档:
Syntax语法
Starting in version 4.4, MongoDB ignores the verbose option.从4.4版本开始,MongoDB会忽略verbose
选项。
Starting in version 4.2, MongoDB deprecates:从4.2版本开始,MongoDB反对:
The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce.用于创建新的分片集合的map-reduce
选项,以及使用sharded
选项进行map-reduce。To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.若要输出到分片集合,请首先创建分片集合。MongoDB 4.2也反对替换现有的分片集合。The explicit specification of nonAtomic: false option.nonAtomic: false
选项的显式规范。
db.collection.mapReduce()
has the following syntax:具有以下语法:
db.collection.mapReduce(
<map>,
<reduce>,
{
out: <collection>,
query: <document>,
sort: <document>,
limit: <number>,
finalize: <function>,
scope: <document>,
jsMode: <boolean>,
verbose: <boolean>,
bypassDocumentValidation: <boolean>
}
)
db.collection.mapReduce()
takes the following parameters:采用以下参数:
map | JavaScript or String | value with a key and emits the key and value pair . value key 关联或“映射”,并发出键和值对。map 函数的要求。 |
reduce | JavaScript or String | values associated with a particular key . values “减少”为一个对象。reduce 函数的要求。 |
options | document | db.collection.mapReduce() .db.collection.mapReduce() 指定附加参数的文档。 |
The following table describes additional arguments that 下表描述了db.collection.mapReduce()
can accept.db.collection.mapReduce()
可以接受的其他参数。
out | string or document | inline output.out 选项。 |
query | document | map function. |
sort | document | |
limit | number | map function.map 函数输入的最大文档数。 |
finalize | Javascript or String | reduce function. reduce 函数之后的输出。finalize 函数的要求。 |
scope | document | map , reduce and finalize functions.map 、reduce 和finalize 函数中可访问的全局变量。 |
jsMode | boolean | map and reduce functions.map 和reduce 函数之间将中间数据转换为BSON格式。false .false 。false :false :
true :true :
|
verbose | boolean | timing information in the result information. Set verbose to true to include the timing information.timing 信息。将verbose 设置为true 以包含timing 信息。false .false 。timing information. timing 信息。db.collection.explain() with db.collection.mapReduce() in the "executionStats" or "allPlansExecution" verbosity modes. "executionStats" 或"allPlansExecution" verbosity 模式下运行db.collection.explain() 和db.collection.mapReduce() 来查看时间信息。 |
collation | document | Collation 允许用户为字符串比较指定特定于语言的规则,例如大小写和重音标记的规则。collation: { locale field is mandatory; all other collation fields are optional. For descriptions of the fields, see Collation Document.locale 字段是必需的;所有其他排序规则字段都是可选的。有关字段的说明,请参阅排序规则文档。db.createCollection() ), the operation uses the collation specified for the collection.db.createCollection() ),则操作将使用为集合指定的排序规则。 |
bypassDocumentValidation | boolean | mapReduce to bypass document validation during the operation. mapReduce 在操作过程中绕过文档验证。 |
map reduce操作和map-reduce operations
and $where
operator expressions cannot access certain global functions or properties, such as db
, that are available in mongosh
.$where
运算符表达式无法访问mongosh
中可用的某些全局函数或属性,如db
。
The following JavaScript functions and properties are available to 以下JavaScript函数和属性可用于map-reduce操作和map-reduce operations
and $where
operator expressions:$where
运算符表达式:
args MaxKey MinKey | assert() BinData() DBPointer() DBRef() doassert() emit() gc() HexData() hex_md5() isNumber() isObject() ISODate() isString() | Map() MD5() NumberInt() NumberLong() ObjectId() print() printjson() printjsononeline() sleep() Timestamp() tojson() tojsononeline() tojsonObject() UUID() version() |
Requirements for the map
Functionmap
函数的要求
map
FunctionThe map
function is responsible for transforming each input document into zero or more documents. map
函数负责将每个输入文档转换为零个或多个文档。It can access the variables defined in the 它可以访问scope
parameter, and has the following prototype:scope
参数中定义的变量,并具有以下原型:
function() {
...
emit(key, value);
}
The map
function has the following requirements:map
函数具有以下要求:
In the在map
function, reference the current document asthis
within the function.map
函数中,将当前文档引用为函数中的this
。Themap
function should not access the database for any reason.map
函数不应出于任何原因访问数据库。Themap
function should be pure, or have no impact outside of the function (i.e. side effects.)map
函数应该是纯的,或者在函数之外没有影响(即副作用)Themap
function may optionally callemit(key,value)
any number of times to create an output document associatingkey
withvalue
.map
函数可以任意多次调用emit(key,value)
来创建将key
与value
关联的输出文档。In MongoDB 4.2 and earlier, a single emit can only hold half of MongoDB's maximum BSON document size. MongoDB removes this restriction starting in version 4.4.在MongoDB 4.2及更早版本中,单个emit只能容纳MongoDB最大BSON文档大小的一半。MongoDB从4.4版本开始删除了这个限制。Starting in MongoDB 4.4,从MongoDB 4.4开始,mapReduce
no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions.mapReduce
不再支持不推荐使用的BSON Type JavaScript代码,其函数具有作用域(BSON Type 15)。Themap
function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13).map
函数必须是BSON Type String(BSON Type 2)或BSON Type JavaScript(BSON Type13)。To pass constant values which will be accessible in the要传递map
function, use thescope
parameter.map
函数中可访问的常数值,请使用scope
参数。
The use of JavaScript code with scope for the自4.2.1版本以来,一直不赞成使用带有map
function has been deprecated since version 4.2.1.map
函数作用域的JavaScript代码。
The following 以下map
function will call emit(key,value)
either 0 or 1 times depending on the value of the input document's status
field:map
函数将根据输入文档的status
字段的值调用emit(key,value)
0或1次:
function() {
if (this.status == 'A')
emit(this.cust_id, 1);
}
The following 根据输入文档map
function may call emit(key,value)
multiple times depending on the number of elements in the input document's items
field:items
字段中元素的数量,以下map
函数可能多次调用emit(key,value)
:
function() {
this.items.forEach(function(item){ emit(item.sku, 1); });
}
Requirements for the reduce
Functionreduce
函数的要求
reduce
FunctionThe reduce
function has the following prototype:reduce
函数具有以下原型:
function(key, values) {
...
return result;
}
The reduce
function exhibits the following behaviors:reduce
函数表现出以下行为:
Thereduce
function should not access the database, even to perform read operations.reduce
函数不应该访问数据库,甚至不应该执行读取操作。Thereduce
function should not affect the outside system.reduce
函数不应影响外部系统。MongoDB can invoke theMongoDB可以为同一个键多次调用reduce
function more than once for the same key.reduce
函数。In this case, the previous output from the在这种情况下,该键的reduce
function for that key will become one of the input values to the nextreduce
function invocation for that key.reduce
函数的上一个输出将成为该键的下一个reduce
函数调用的输入值之一。Thereduce
function can access the variables defined in thescope
parameter.reduce
函数可以访问scope
参数中定义的变量。The inputs toreduce
must not be larger than half of MongoDB's maximum BSON document size.reduce
的输入不得大于MongoDB最大BSON文档大小的一半。This requirement may be violated when large documents are returned and then joined together in subsequent当返回大型文档,然后在后续的reduce
steps.reduce
步骤中将其连接在一起时,可能会违反此要求。Starting in MongoDB 4.4,从MongoDB 4.4开始,mapReduce
no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions.mapReduce
不再支持不推荐使用的BSON Type JavaScript代码,其函数具有作用域(BSON Type 15)。Thereduce
function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13).reduce
函数必须是BSON Type String(BSON Type 2)或BSON Type JavaScript(BSON Type13)。To pass constant values which will be accessible in the要传递reduce
function, use thescope
parameter.reduce
函数中可访问的常数值,请使用scope
参数。
The use of JavaScript code with scope for the自4.2.1版本以来,一直不赞成使用具有reduce
function has been deprecated since version 4.2.1.reduce
函数作用域的JavaScript代码。
Because it is possible to invoke the 由于同一个键可以多次调用reduce
function more than once for the same key, the following properties need to be true:reduce
函数,因此以下属性必须为true
:
the type of the return object must be identical to the type of the返回对象的类型必须与value
emitted by themap
function.map
函数发出的value
的类型相同。thereduce
function must be associative. The following statement must be true:reduce
函数必须是关联的。以下陈述必须正确:reduce(key, [ C, reduce(key, [ A, B ]) ] ) == reduce( key, [ C, A, B ] )
thereduce
function must be idempotent.reduce
函数必须是幂等的。Ensure that the following statement is true:确保以下陈述正确无误:reduce( key, [ reduce(key, valuesArray) ] ) == reduce( key, valuesArray )
thereduce
function should be commutative: that is, the order of the elements in thevaluesArray
should not affect the output of thereduce
function, so that the following statement is true:reduce
函数应该是可交换的:也就是说,valuesArray
中元素的顺序不应该影响reduce
函数的输出,因此以下语句为true
:reduce( key, [ A, B ] ) == reduce( key, [ B, A ] )
out
Options选项
You can specify the following options for the 可以为out
parameter:out
参数指定以下选项:
Output to a Collection输出到集合
This option outputs to a new collection, and is not available on secondary members of replica sets.此选项输出到新集合,在副本集的辅助成员上不可用。
out: <collectionName>
Output to a Collection with an Action输出到具有操作的集合
Starting in version 4.2, MongoDB deprecates:从4.2版本开始,MongoDB反对:
The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.用于创建新的分片集合的贴图减少选项,以及使用sharded
选项进行贴图减少。若要输出到分片集合,请首先创建分片集合。MongoDB 4.2也反对替换现有的分片集合。The explicit specification of nonAtomic: false option.nonAtomic: false选项的显式规范。
This option is only available when passing a collection that already exists to 此选项仅在将已存在的集合传递给out
. It is not available on secondary members of replica sets.out
时可用。它在副本集的辅助成员上不可用。
out: { <action>: <collectionName>
[, db: <dbName>]
[, sharded: <boolean> ]
[, nonAtomic: <boolean> ] }
When you output to a collection with an action, the 当输出到具有操作的集合时,out
has the following parameters:out
具有以下参数:
<action>
: Specify one of the following actions::指定以下操作之一:replace
Replace the contents of the如果存在具有<collectionName>
if the collection with the<collectionName>
exists.<collectionName>
的集合,请替换<collectionName>
的内容。merge
Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, overwrite that existing document.如果输出集合已存在,则将新结果与现有结果合并。如果现有文档与新结果具有相同的键,请覆盖该现有文档。reduce
Merge the new result with the existing result if the output collection already exists.如果输出集合已存在,则将新结果与现有结果合并。If an existing document has the same key as the new result, apply the如果现有文档与新结果具有相同的键,请对新文档和现有文档应用reduce
function to both the new and the existing documents and overwrite the existing document with the result.reduce
函数,并用结果覆盖现有文档。
db
:Optional.可选的。The name of the database that you want the map-reduce operation to write its output.您希望map-reduce操作写入其输出的数据库的名称。By default this will be the same database as the input collection.默认情况下,这将是与输入集合相同的数据库。sharded
:NoteStarting in version 4.2, the use of the从4.2版本开始,不赞成使用sharded
option is deprecated.sharded
选项。Optional.可选的。If如果为true
and you have enabled sharding on output database, the map-reduce operation will shard the output collection using the_id
field as the shard key.true
,并且您已经在输出数据库上启用了分片,则map-reduce操作将使用_id
字段作为分片键对输出集合进行分片。If如果为true
andcollectionName
is an existing unsharded collection, map-reduce fails.true
并且collectionName
是现有的未排序集合,则map reduce将失败。nonAtomic
:NoteStarting in MongoDB 4.2, explicitly setting从MongoDB 4.2开始,不赞成将nonAtomic
tofalse
is deprecated.nonAtomic
显式设置为false
。Optional.可选的。Specify output operation as non-atomic.将输出操作指定为非原子操作。This applies only to the这只适用于merge
andreduce
output modes, which may take minutes to execute.merge
和reduce
输出模式,执行这些模式可能需要几分钟时间。By default默认情况下,nonAtomic
isfalse
, and the map-reduce operation locks the database during post-processing.nonAtomic
为false
,map-reduce操作会在后处理过程中锁定数据库。If如果nonAtomic
istrue
, the post-processing step prevents MongoDB from locking the database: during this time, other clients will be able to read intermediate states of the output collection.nonAtomic
为true
,后期处理步骤将阻止MongoDB锁定数据库:在此期间,其他客户端将能够读取输出集合的中间状态。
Output Inline输出内联
Perform the map-reduce operation in memory and return the result. 在内存中执行映射缩减操作并返回结果。This option is the only available option for 此选项是复制副本集的辅助成员的out
on secondary members of replica sets.out
的唯一可用的选项。
out: { inline: 1 }
The result must fit within the maximum size of a BSON document.结果必须在BSON文档的最大大小范围内。
Requirements for the finalize
Functionfinalize
函数的要求
finalize
FunctionThe finalize
function has the following prototype:finalize
函数具有以下原型:
function(key, reducedValue) {
...
return modifiedObject;
}
The finalize
function receives as its arguments a key
value and the reducedValue
from the reduce
function. Be aware that:finalize
函数从reduce
函数接收一个key
值和reducedValue
作为其参数。请注意:
Thefinalize
function should not access the database for any reason.finalize
函数不应出于任何原因访问数据库。Thefinalize
function should be pure, or have no impact outside of the function (i.e. side effects.)finalize
函数应该是纯函数,或者在函数之外没有影响(即副作用)Thefinalize
function can access the variables defined in thescope
parameter.finalize
函数可以访问scope
参数中定义的变量。Starting in MongoDB 4.4,从MongoDB 4.4开始,mapReduce
no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions.mapReduce
不再支持不推荐使用的BSON Type JavaScript代码,其函数具有作用域(BSON Type 15)。Thefinalize
function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13).finalize
函数必须是BSON Type String(BSON Type 2)或BSON Type JavaScript(BSON Type13)。To pass constant values which will be accessible in the要传递可在finalize
function, use thescope
parameter.finalize
函数中访问的常数值,请使用scope
参数。
The use of JavaScript code with scope for the自4.2.1版本以来,一直不赞成使用具有finalize
function has been deprecated since version 4.2.1.finalize
函数作用域的JavaScript代码。
Map-Reduce Examples
The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. 本节中的示例包括没有自定义聚合表达式的聚合管道备选方案。For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义表达式的备选方案,请参阅Map-Reduce到聚合管道转换示例。
Create a sample collection 使用以下文档创建示例集合orders
with these documents:orders
:
db.orders.insertMany([
{ _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" },
{ _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" },
{ _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"},
{ _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }
])
Return the Total Price Per Customer返回每个客户的总价
Perform the map-reduce operation on the 对orders
collection to group by the cust_id
, and calculate the sum of the price
for each cust_id
:orders
集合执行map-reduce操作,以cust_id
进行分组,并计算每个cust_id
的price
之和:
Define the map function to process each input document:定义映射函数以处理每个输入文档:In the function,在函数中,this
refers to the document that the map-reduce operation is processing.this
引用map-reduce操作正在处理的文档。The function maps the该函数将每个文档的price
to thecust_id
for each document and emits thecust_id
andprice
.price
映射到cust_id
,并发出cust_id
和price
。
var mapFunction1 = function() {
emit(this.cust_id, this.price);
};Define the corresponding reduce function with two arguments使用两个参数keyCustId
andvaluesPrices
:keyCustId
和valuesPrices
定义相应的reduce函数:ThevaluesPrices
is an array whose elements are theprice
values emitted by the map function and grouped bykeyCustId
.valuesPrices
是一个数组,其元素是map
函数发出的price
值,并按keyCustId
分组。The function reduces the该函数将valuesPrice
array to the sum of its elements.valuesPrice
数组的值减少为其元素的总和。
var reduceFunction1 = function(keyCustId, valuesPrices) {
return Array.sum(valuesPrices);
};Perform map-reduce on all documents in the使用orders
collection using themapFunction1
map function and thereduceFunction1
reduce function:mapFunction1
map函数和reduceFunction1
reduce函数对订单集合中的所有文档执行map-reduce:db.orders.mapReduce(
mapFunction1,
reduceFunction1,
{ out: "map_reduce_example" }
)This operation outputs the results to a collection named此操作将结果输出到名为map_reduce_example
.map_reduce_example
的集合。If the如果map_reduce_example
collection already exists, the operation will replace the contents with the results of this map-reduce operation.map_reduce_example
集合已经存在,则该操作将用此map-reduce操作的结果替换内容。Query the查询map_reduce_example
collection to verify the results:map_reduce_example
集合以验证结果:db.map_reduce_example.find().sort( { _id: 1 } )
The operation returns these documents:操作将返回以下文档:{ "_id" : "Ant O. Knee", "value" : 95 }
{ "_id" : "Busby Bee", "value" : 125 }
{ "_id" : "Cam Elot", "value" : 60 }
{ "_id" : "Don Quis", "value" : 155 }
Aggregation Alternative聚合备选方案
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写映射减少操作,而无需定义自定义函数:
db.orders.aggregate([
{ $group: { _id: "$cust_id", value: { $sum: "$price" } } },
{ $out: "agg_alternative_1" }
])
The$group
stage groups by thecust_id
and calculates thevalue
field (See also$sum
).$group
阶段根据cust_id
进行分组,并计算value
字段(另请参见$sum
)。Thevalue
field contains the totalprice
for eachcust_id
.value
字段包含每个cust_id
的总价。The stage output the following documents to the next stage:该阶段将以下文档输出到下一阶段:{ "_id" : "Don Quis", "value" : 155 }
{ "_id" : "Ant O. Knee", "value" : 95 }
{ "_id" : "Cam Elot", "value" : 60 }
{ "_id" : "Busby Bee", "value" : 125 }Then, the然后,$out
writes the output to the collectionagg_alternative_1
.$out
将输出写入集合agg_alternative_1
。Alternatively, you could use或者,您可以使用$merge
instead of$out
.$merge
而不是$out
。Query the查询agg_alternative_1
collection to verify the results:agg_alternative_1
集合以验证结果:db.agg_alternative_1.find().sort( { _id: 1 } )
The operation returns the following documents:该操作返回以下文档:{ "_id" : "Ant O. Knee", "value" : 95 }
{ "_id" : "Busby Bee", "value" : 125 }
{ "_id" : "Cam Elot", "value" : 60 }
{ "_id" : "Don Quis", "value" : 155 }
See also: 另请参阅:
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例。
Calculate Order and Total Quantity with Average Quantity Per Item使用每个项目的平均数量计算订单和总数量
In the following example, you will see a map-reduce operation on the 在以下示例中,您将看到orders
collection for all documents that have an ord_date
value greater than or equal to 2020-03-01
.orders
集合上的映射减少操作,该操作适用于ord_date
值大于或等于2020-03-01
的所有文档。
The operation in the example:示例中的操作:
Groups by the按item.sku
field, and calculates the number of orders and the total quantity ordered for eachsku
.item.sku
字段分组,并计算每个sku
的订单数量和订购总量。Calculates the average quantity per order for each计算每个sku
value and merges the results into the output collection.sku
值的每个订单的平均数量,并将结果合并到输出集合中。
When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. 合并结果时,如果现有文档与新结果具有相同的键,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则操作将插入该文档。
Example steps:示例步骤:
Define the map function to process each input document:定义映射函数以处理每个输入文档:In the function,在函数中,this
refers to the document that the map-reduce operation is processing.this
引用map-reduce操作正在处理的文档。For each item, the function associates the对于每个项目,该函数将sku
with a new objectvalue
that contains thecount
of1
and the itemqty
for the order and emits thesku
(stored in thekey
) and thevalue
.sku
与一个新的对象value
相关联,该值包含订单的count
1
和项目qty
,并发出sku
(存储在key
中)和value
。
var mapFunction2 = function() {
for (var idx = 0; idx < this.items.length; idx++) {
var key = this.items[idx].sku;
var value = { count: 1, qty: this.items[idx].qty };
emit(key, value);
}
};Define the corresponding reduce function with two arguments使用两个参数keySKU
andcountObjVals
:keySKU
和countObjVals
定义相应的reduce函数:countObjVals
is an array whose elements are the objects mapped to the grouped是一个数组,其元素是映射到由map函数传递给reducer函数的分组keySKU
values passed by map function to the reducer function.keySKU
值的对象。The function reduces the该函数将countObjVals
array to a single objectreducedValue
that contains thecount
and theqty
fields.countObjVals
数组缩减为单个对象reducedValue
,该对象包含count
和qty
字段。In在reducedVal
, thecount
field contains the sum of thecount
fields from the individual array elements, and theqty
field contains the sum of theqty
fields from the individual array elements.reducedVal
中,count
字段包含单个数组元素的count
字段之和,而qty
字段包含单个数组元素的qty
字段之和。
var reduceFunction2 = function(keySKU, countObjVals) {
reducedVal = { count: 0, qty: 0 };
for (var idx = 0; idx < countObjVals.length; idx++) {
reducedVal.count += countObjVals[idx].count;
reducedVal.qty += countObjVals[idx].qty;
}
return reducedVal;
};Define a finalize function with two arguments定义一个带有两个参数key
andreducedVal
.key
和reducedVal
的finalize函数。The function modifies the函数修改reducedVal
object to add a computed field namedavg
and returns the modified object:reducedVal
对象以添加名为avg
的计算字段,并返回修改后的对象:var finalizeFunction2 = function (key, reducedVal) {
reducedVal.avg = reducedVal.qty/reducedVal.count;
return reducedVal;
};Perform the map-reduce operation on the使用orders
collection using themapFunction2
,reduceFunction2
, andfinalizeFunction2
functions:mapFunction2
、reduceFunction2
和finalizeFunction2
函数对订单集合执行map-reduce操作:db.orders.mapReduce(
mapFunction2,
reduceFunction2,
{
out: { merge: "map_reduce_example2" },
query: { ord_date: { $gte: new Date("2020-03-01") } },
finalize: finalizeFunction2
}
);This operation uses the此操作使用query
field to select only those documents withord_date
greater than or equal tonew Date("2020-03-01")
. Then it outputs the results to a collectionmap_reduce_example2
.query
字段仅选择ord_date
大于或等于new Date("2020-03-01")
的文档。然后,它将结果输出到集合map_reduce_example2
。If the如果map_reduce_example2
collection already exists, the operation will merge the existing contents with the results of this map-reduce operation.map_reduce_example2
集合已经存在,则该操作将把现有内容与此map-reduce操作的结果合并。That is, if an existing document has the same key as the new result, the operation overwrites the existing document.也就是说,如果现有文档与新结果具有相同的键,则操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则操作将插入该文档。Query the查询map_reduce_example2
collection to verify the results:map_reduce_example2
集合以验证结果:db.map_reduce_example2.find().sort( { _id: 1 } )
The operation returns these documents:操作将返回以下文档:{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
{ "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
{ "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
{ "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Aggregation Alternative聚合备选方案
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写映射减少操作,而无需定义自定义函数:
db.orders.aggregate( [
{ $match: { ord_date: { $gte: new Date("2020-03-01") } } },
{ $unwind: "$items" },
{ $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } } },
{ $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } },
{ $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } }
] )
The$match
stage selects only those documents withord_date
greater than or equal tonew Date("2020-03-01")
.$match
阶段仅选择ord_date
大于或等于new Date("2020-03-01")
的文档。The$unwind
stage breaks down the document by theitems
array field to output a document for each array element.$unwind
阶段按items
数组字段对文档进行分解,为每个数组元素输出一个文档。For example:例如:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
...The$group
stage groups by theitems.sku
, calculating for each sku:$group
阶段按items.sku
分组,为每个sku
计算:{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
{ "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
{ "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
{ "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
{ "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }The$project
stage reshapes the output document to mirror the map-reduce's output to have two fields_id
andvalue
.$project
阶段重塑输出文档,以镜像map-reduce的输出,使其具有两个字段_id
和value
。The$project
sets:$project
设置:The$unwind
stage breaks down the document by theitems
array field to output a document for each array element.$unwind
阶段按items
数组字段对文档进行分解,为每个数组元素输出一个文档。For example:例如:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
...The$group
stage groups by theitems.sku
, calculating for each sku:$group
阶段按items.sku
分组,为每个sku
计算:Theqty
field. Theqty
field contains the totalqty
ordered per eachitems.sku
using$sum
.qty
字段。qty
字段包含使用$sum
为每个items.sku
订购的总数量。Theorders_ids
array. Theorders_ids
field contains an array of distinct order_id
's for theitems.sku
using$addToSet
.orders_ids
数组。orders_ids
字段包含一个使用$addToSet
的items.sku
的不同order_id
的数组。
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
{ "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
{ "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
{ "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
{ "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }The$project
stage reshapes the output document to mirror the map-reduce's output to have two fields_id
andvalue
.$project
阶段重塑输出文档,以镜像map-reduce的输出,使其具有两个字段_id
和value
。The$project
sets:$project
设置:the使用value.count
to the size of theorders_ids
array using$size
.$size
将value.count
设置为orders_ids
数组的大小。the输入单据的value.qty
to theqty
field of input document.qty
字段的value.qty
。thevalue.avg
to the average number of qty per order using$divide
and$size
.value.avg
是使用$divide
和$size
的每个订单的平均数量。
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
{ "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
{ "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
{ "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }Finally, the最后,$merge
writes the output to the collectionagg_alternative_3
.$merge
将输出写入集合agg_alternative_3
。If an existing document has the same key如果现有文档具有与新结果相同的键_id
as the new result, the operation overwrites the existing document._id
,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则操作将插入该文档。Query the查询agg_alternative_3
collection to verify the results:agg_alternative_3
集合以验证结果:db.agg_alternative_3.find().sort( { _id: 1 } )
The operation returns the following documents:该操作返回以下文档:{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
{ "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
{ "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
{ "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
See also: 另请参阅:
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例。
Output输出
The output of the db.collection.mapReduce()
method is identical to that of the mapReduce
command. db.collection.mapReduce()
方法的输出与mapReduce
命令的输出相同。See the Output section of the 有关mapReduce
command for information on the db.collection.mapReduce()
output.db.collection.mapReduce()
输出的信息,请参阅mapReduce
命令的Output部分。
Restrictions限制
MongoDB drivers automatically set afterClusterTime for operations associated with causally consistent sessions. MongoDB驱动程序会为与因果一致会话相关联的操作自动设置afterClusterTime。Starting in MongoDB 4.2, the 从MongoDB 4.2开始,db.collection.mapReduce()
no longer support afterClusterTime. As such, db.collection.mapReduce()
cannot be associatd with causally consistent sessions.db.collection.mapReduce()
不再支持afterClusterTime
。因此,db.collection.mapReduce()
不能与因果一致的会话相关联。