Docs HomeMongoDB Manual

db.collection.mapReduce()

Note

Aggregation Pipeline as Alternative to Map-Reduce聚合管道作为Map-Reduce的替代方案

Starting in MongoDB 5.0, map-reduce is deprecated:从MongoDB 5.0开始,不赞成使用map-reduce

  • Instead of map-reduce, you should use an aggregation pipeline. Aggregation pipelines provide better performance and usability than map-reduce.您应该使用聚合管道,而不是map-reduce。聚合管道提供了比映射减少更好的性能和可用性。
  • You can rewrite map-reduce operations using aggregation pipeline stages, such as $group, $merge, and others.您可以使用聚合管道阶段(如$group$merge和其他阶段)重写映射减少操作。
  • For map-reduce operations that require custom functionality, you can use the $accumulator and $function aggregation operators, available starting in version 4.4. You can use those operators to define custom aggregation expressions in JavaScript.对于需要自定义函数的map-reduce操作,可以使用$accumulator$function聚合运算符,这些运算符从4.4版开始提供。您可以使用这些运算符在JavaScript中定义自定义聚合表达式。

For examples of aggregation pipeline alternatives to map-reduce, see:有关映射减少的聚合管道替代方案的示例,请参阅:

db.collection.mapReduce(map,reduce, { <options> })
Important

mongosh Method

This page documents a mongosh method. 本页记录了一个mongosh方法。This is not the documentation for database commands or language-specific drivers, such as Node.js.这不是数据库命令或特定语言驱动程序(如Node.js)的文档。

For the database command, see the mapReduce command.有关数据库命令,请参阅mapReduce命令。

For MongoDB API drivers, refer to the language-specific MongoDB driver documentation.有关MongoDB API驱动程序,请参阅特定语言的MongoDB驱动程序文档

For the legacy mongo shell documentation, refer to the documentation for the corresponding MongoDB Server release:对于遗留的mongoshell文档,请参阅相应MongoDB Server版本的文档:

mongo shell v4.4

Note

Views do not support map-reduce operations.视图不支持map-reduce操作。

Syntax语法

Note

Starting in version 4.4, MongoDB ignores the verbose option.从4.4版本开始,MongoDB会忽略verbose选项。

Starting in version 4.2, MongoDB deprecates:从4.2版本开始,MongoDB反对:

  • The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. 用于创建新的分片集合的map-reduce选项,以及使用sharded选项进行map-reduce。To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.若要输出到分片集合,请首先创建分片集合。MongoDB 4.2也反对替换现有的分片集合。
  • The explicit specification of nonAtomic: false option.nonAtomic: false选项的显式规范。

db.collection.mapReduce() has the following syntax:具有以下语法:

db.collection.mapReduce(
<map>,
<reduce>,
{
out: <collection>,
query: <document>,
sort: <document>,
limit: <number>,
finalize: <function>,
scope: <document>,
jsMode: <boolean>,
verbose: <boolean>,
bypassDocumentValidation: <boolean>
}
)

db.collection.mapReduce() takes the following parameters:采用以下参数:

Parameter参数Type类型Description描述
mapJavaScript or StringA JavaScript function that associates or "maps" a value with a key and emits the key and value pair. 一个JavaScript函数,它将valuekey关联或“映射”,并发出键和值对。You can specify the function as BSON type JavaScript (BSON Type 13) or String (BSON Type 2).您可以将函数指定为BSON类型JavaScript(BSON类型13)或String(BSON type 2)。
See Requirements for the map Function for more information. 有关更多信息,请参阅map函数的要求
reduceJavaScript or StringA JavaScript function that "reduces" to a single object all the values associated with a particular key. 一个JavaScript函数,它将与特定键相关的所有values“减少”为一个对象。You can specify the function as BSON type JavaScript (BSON Type 13) or String (BSON Type 2).您可以将函数指定为BSON类型JavaScript(BSON类型13)或String(BSON type 2)。
See Requirements for the reduce Function for more information. 有关详细信息,请参阅reduce函数的要求
optionsdocumentA document that specifies additional parameters to db.collection.mapReduce().db.collection.mapReduce()指定附加参数的文档。

The following table describes additional arguments that db.collection.mapReduce() can accept.下表描述了db.collection.mapReduce()可以接受的其他参数。

Field字段Type类型Description描述
outstring or documentSpecifies the location of the result of the map-reduce operation. 指定贴图减少操作的结果的位置。You can output to a collection, output to a collection with an action, or output inline. 您可以输出到集合、通过操作输出到集合或内联输出。You may output to a collection when performing map-reduce operations on the primary members of the set; on secondary members you may only use the inline output.在对集合的主要成员执行map-reduce操作时,可以输出到集合;在secondary成员上,您只能使用内联输出。
See out Options for more information. 有关详细信息,请参阅out选项
querydocumentSpecifies the selection criteria using query operators for determining the documents input to the map function.使用查询运算符指定选择条件,以确定输入到映射函数的文档。
sortdocumentSorts the input documents. 输入文档进行排序。This option is useful for optimization. 此选项对优化非常有用。For example, specify the sort key to be the same as the emit key so that there are fewer reduce operations. 例如,将排序键指定为与发出键相同,以便减少reduce操作。The sort key must be in an existing index for this collection.排序键必须在此集合的现有索引中。
limitnumberSpecifies a maximum number of documents for the input into the map function.指定map函数输入的最大文档数。
finalizeJavascript or StringOptional.可选的。A JavaScript function that modifies the output after the reduce function. 一个JavaScript函数,用于修改reduce函数之后的输出。You can specify the function as BSON type JavaScript (BSON Type 13) or String (BSON Type 2).您可以将函数指定为BSON类型JavaScript(BSON类型13)或String(BSON type 2)。
See Requirements for the finalize Function for more information. 有关更多信息,请参阅finalize函数的要求
scopedocumentSpecifies global variables that are accessible in the map, reduce and finalize functions.指定mapreducefinalize函数中可访问的全局变量。
jsModebooleanSpecifies whether to convert intermediate data into BSON format between the execution of the map and reduce functions.指定是否在执行mapreduce函数之间将中间数据转换为BSON格式。
Defaults to false.默认为false
If false:如果为false
  • Internally, MongoDB converts the JavaScript objects emitted by the map function to BSON objects. 在内部,MongoDB将map函数发出的JavaScript对象转换为BSON对象。These BSON objects are then converted back to JavaScript objects when calling the reduce function.然后,在调用reduce函数时,这些BSON对象被转换回JavaScript对象。
  • The map-reduce operation places the intermediate BSON objects in temporary, on-disk storage. This allows the map-reduce operation to execute over arbitrarily large data sets.map reduce操作将中间BSON对象放置在磁盘上的临时存储中。这允许在任意大的数据集上执行map reduce操作。
If true:如果为true
  • Internally, the JavaScript objects emitted during map function remain as JavaScript objects. 在内部,map函数期间发出的JavaScript对象保持为JavaScript对象。There is no need to convert the objects for the reduce function, which can result in faster execution.reduce函数不需要转换对象,这可以加快执行速度。
  • You can only use jsMode for result sets with fewer than 500,000 distinct key arguments to the mapper's emit() function.对于映射器的emit()函数的不同key参数少于500000的结果集,只能使用jsMode
verbosebooleanSpecifies whether to include the timing information in the result information. Set verbose to true to include the timing information.指定是否在结果信息中包括timing信息。将verbose设置为true以包含timing信息。
Defaults to false.默认为false
Starting in MongoDB 4.4, this option is ignored. 从MongoDB 4.4开始,此选项被忽略。The result information always excludes the timing information. 结果信息总是排除timing信息。You can view timing information by running db.collection.explain() with db.collection.mapReduce() in the "executionStats" or "allPlansExecution" verbosity modes. 您可以通过在"executionStats""allPlansExecution" verbosity模式下运行db.collection.explain()db.collection.mapReduce()来查看时间信息。
collationdocumentOptional.可选的。
Specifies the collation to use for the operation.指定要用于操作的排序规则
Collation allows users to specify language-specific rules for string comparison, such as rules for lettercase and accent marks.Collation允许用户为字符串比较指定特定于语言的规则,例如大小写和重音标记的规则。
The collation option has the following syntax:排序规则选项具有以下语法:
collation: {
locale: <string>,
caseLevel: <boolean>,
caseFirst: <string>,
strength: <int>,
numericOrdering: <boolean>,
alternate: <string>,
maxVariable: <string>,
backwards: <boolean>
}
When specifying collation, the locale field is mandatory; all other collation fields are optional. For descriptions of the fields, see Collation Document.指定排序规则时,locale字段是必需的;所有其他排序规则字段都是可选的。有关字段的说明,请参阅排序规则文档
If the collation is unspecified but the collection has a default collation (see db.createCollection()), the operation uses the collation specified for the collection.如果未指定排序规则,但集合具有默认排序规则(请参见db.createCollection()),则操作将使用为集合指定的排序规则。
If no collation is specified for the collection or for the operations, MongoDB uses the simple binary comparison used in prior versions for string comparisons.如果没有为集合或操作指定排序规则,MongoDB将使用以前版本中使用的简单二进制比较进行字符串比较。
You cannot specify multiple collations for an operation. For example, you cannot specify different collations per field, or if performing a find with a sort, you cannot use one collation for the find and another for the sort. 不能为一个操作指定多个排序规则。例如,不能为每个字段指定不同的排序规则,或者如果使用排序执行查找,则不能为查找使用一个排序规则,为排序使用另一个排序顺序。
bypassDocumentValidationbooleanOptional.可选的。Enables mapReduce to bypass document validation during the operation. 允许mapReduce在操作过程中绕过文档验证。This lets you insert documents that do not meet the validation requirements.这样可以插入不符合验证要求的文档。
Note

map-reduce operations and $where operator expressions cannot access certain global functions or properties, such as db, that are available in mongosh.map reduce操作$where运算符表达式无法访问mongosh中可用的某些全局函数或属性,如db

The following JavaScript functions and properties are available to map-reduce operations and $where operator expressions:以下JavaScript函数和属性可用于map-reduce操作$where运算符表达式:

Available Properties可用属性Available Functions可用函数
args
MaxKey
MinKey
assert()
BinData()
DBPointer()
DBRef()
doassert()
emit()
gc()
HexData()
hex_md5()
isNumber()
isObject()
ISODate()
isString()
Map()
MD5()
NumberInt()
NumberLong()
ObjectId()
print()
printjson()
printjsononeline()
sleep()
Timestamp()
tojson()
tojsononeline()
tojsonObject()
UUID()
version()

Requirements for the map Functionmap函数的要求

The map function is responsible for transforming each input document into zero or more documents. map函数负责将每个输入文档转换为零个或多个文档。It can access the variables defined in the scope parameter, and has the following prototype:它可以访问scope参数中定义的变量,并具有以下原型:

function() {
...
emit(key, value);
}

The map function has the following requirements:map函数具有以下要求:

  • In the map function, reference the current document as this within the function.map函数中,将当前文档引用为函数中的this
  • The map function should not access the database for any reason.map函数不应出于任何原因访问数据库。
  • The map function should be pure, or have no impact outside of the function (i.e. side effects.)map函数应该是纯的,或者在函数之外没有影响(即副作用)
  • The map function may optionally call emit(key,value) any number of times to create an output document associating key with value.map函数可以任意多次调用emit(key,value)来创建将keyvalue关联的输出文档。
  • In MongoDB 4.2 and earlier, a single emit can only hold half of MongoDB's maximum BSON document size. MongoDB removes this restriction starting in version 4.4.在MongoDB 4.2及更早版本中,单个emit只能容纳MongoDB最大BSON文档大小的一半。MongoDB从4.4版本开始删除了这个限制。
  • Starting in MongoDB 4.4, mapReduce no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions. 从MongoDB 4.4开始,mapReduce不再支持不推荐使用的BSON Type JavaScript代码,其函数具有作用域(BSON Type 15)。The map function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13). map函数必须是BSON Type String(BSON Type 2)或BSON Type JavaScript(BSON Type13)。To pass constant values which will be accessible in the map function, use the scope parameter.要传递map函数中可访问的常数值,请使用scope参数。


    The use of JavaScript code with scope for the map function has been deprecated since version 4.2.1.自4.2.1版本以来,一直不赞成使用带有map函数作用域的JavaScript代码。

The following map function will call emit(key,value) either 0 or 1 times depending on the value of the input document's status field:以下map函数将根据输入文档的status字段的值调用emit(key,value)0或1次:

function() {
if (this.status == 'A')
emit(this.cust_id, 1);
}

The following map function may call emit(key,value) multiple times depending on the number of elements in the input document's items field:根据输入文档items字段中元素的数量,以下map函数可能多次调用emit(key,value)

function() {
this.items.forEach(function(item){ emit(item.sku, 1); });
}

Requirements for the reduce Functionreduce函数的要求

The reduce function has the following prototype:reduce函数具有以下原型:

function(key, values) {
...
return result;
}

The reduce function exhibits the following behaviors:reduce函数表现出以下行为:

  • The reduce function should not access the database, even to perform read operations.reduce函数不应该访问数据库,甚至不应该执行读取操作。
  • The reduce function should not affect the outside system.reduce函数不应影响外部系统。
  • MongoDB can invoke the reduce function more than once for the same key. MongoDB可以为同一个键多次调用reduce函数。In this case, the previous output from the reduce function for that key will become one of the input values to the next reduce function invocation for that key.在这种情况下,该键的reduce函数的上一个输出将成为该键的下一个reduce函数调用的输入值之一。
  • The reduce function can access the variables defined in the scope parameter.reduce函数可以访问scope参数中定义的变量。
  • The inputs to reduce must not be larger than half of MongoDB's maximum BSON document size. reduce的输入不得大于MongoDB最大BSON文档大小的一半。This requirement may be violated when large documents are returned and then joined together in subsequent reduce steps.当返回大型文档,然后在后续的reduce步骤中将其连接在一起时,可能会违反此要求。
  • Starting in MongoDB 4.4, mapReduce no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions. 从MongoDB 4.4开始,mapReduce不再支持不推荐使用的BSON Type JavaScript代码,其函数具有作用域(BSON Type 15)。The reduce function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13). reduce函数必须是BSON Type String(BSON Type 2)或BSON Type JavaScript(BSON Type13)。To pass constant values which will be accessible in the reduce function, use the scope parameter.要传递reduce函数中可访问的常数值,请使用scope参数。


    The use of JavaScript code with scope for the reduce function has been deprecated since version 4.2.1.自4.2.1版本以来,一直不赞成使用具有reduce函数作用域的JavaScript代码。

Because it is possible to invoke the reduce function more than once for the same key, the following properties need to be true:由于同一个键可以多次调用reduce函数,因此以下属性必须为true

  • the type of the return object must be identical to the type of the value emitted by the map function.返回对象的类型必须与map函数发出的value的类型相同
  • the reduce function must be associative. The following statement must be true:reduce函数必须是关联的。以下陈述必须正确:

    reduce(key, [ C, reduce(key, [ A, B ]) ] ) == reduce( key, [ C, A, B ] )
  • the reduce function must be idempotent. reduce函数必须是幂等的Ensure that the following statement is true:确保以下陈述正确无误:

    reduce( key, [ reduce(key, valuesArray) ] ) == reduce( key, valuesArray )
  • the reduce function should be commutative: that is, the order of the elements in the valuesArray should not affect the output of the reduce function, so that the following statement is true:reduce函数应该是可交换的:也就是说,valuesArray中元素的顺序不应该影响reduce函数的输出,因此以下语句为true

    reduce( key, [ A, B ] ) == reduce( key, [ B, A ] )

out Options选项

You can specify the following options for the out parameter:可以为out参数指定以下选项:

Output to a Collection输出到集合

This option outputs to a new collection, and is not available on secondary members of replica sets.此选项输出到新集合,在副本集的辅助成员上不可用。

out: <collectionName>

Output to a Collection with an Action输出到具有操作的集合

Note

Starting in version 4.2, MongoDB deprecates:从4.2版本开始,MongoDB反对:

  • The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.用于创建新的分片集合的贴图减少选项,以及使用sharded选项进行贴图减少。若要输出到分片集合,请首先创建分片集合。MongoDB 4.2也反对替换现有的分片集合。
  • The explicit specification of nonAtomic: false option.nonAtomic: false选项的显式规范。

This option is only available when passing a collection that already exists to out. It is not available on secondary members of replica sets.此选项仅在将已存在的集合传递给out时可用。它在副本集的辅助成员上不可用。

out: { <action>: <collectionName>
[, db: <dbName>]
[, sharded: <boolean> ]
[, nonAtomic: <boolean> ] }

When you output to a collection with an action, the out has the following parameters:当输出到具有操作的集合时,out具有以下参数:

  • <action>: Specify one of the following actions::指定以下操作之一:

    • replace

      Replace the contents of the <collectionName> if the collection with the <collectionName> exists.如果存在具有<collectionName>的集合,请替换<collectionName>的内容。

    • merge

      Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, overwrite that existing document.如果输出集合已存在,则将新结果与现有结果合并。如果现有文档与新结果具有相同的键,请覆盖该现有文档。

    • reduce

      Merge the new result with the existing result if the output collection already exists. 如果输出集合已存在,则将新结果与现有结果合并。If an existing document has the same key as the new result, apply the reduce function to both the new and the existing documents and overwrite the existing document with the result.如果现有文档与新结果具有相同的键,请对新文档和现有文档应用reduce函数,并用结果覆盖现有文档。

  • db:

    Optional. 可选的。The name of the database that you want the map-reduce operation to write its output. 您希望map-reduce操作写入其输出的数据库的名称。By default this will be the same database as the input collection.默认情况下,这将是与输入集合相同的数据库。

  • sharded:

    Note

    Starting in version 4.2, the use of the sharded option is deprecated.从4.2版本开始,不赞成使用sharded选项。

    Optional. 可选的。If true and you have enabled sharding on output database, the map-reduce operation will shard the output collection using the _id field as the shard key.如果为true,并且您已经在输出数据库上启用了分片,则map-reduce操作将使用_id字段作为分片键对输出集合进行分片。

    If true and collectionName is an existing unsharded collection, map-reduce fails.如果为true并且collectionName是现有的未排序集合,则map reduce将失败。

  • nonAtomic:

    Note

    Starting in MongoDB 4.2, explicitly setting nonAtomic to false is deprecated.从MongoDB 4.2开始,不赞成将nonAtomic显式设置为false

    Optional. 可选的。Specify output operation as non-atomic. 将输出操作指定为非原子操作。This applies only to the merge and reduce output modes, which may take minutes to execute.这只适用于mergereduce输出模式,执行这些模式可能需要几分钟时间。

    By default nonAtomic is false, and the map-reduce operation locks the database during post-processing.默认情况下,nonAtomicfalse,map-reduce操作会在后处理过程中锁定数据库。

    If nonAtomic is true, the post-processing step prevents MongoDB from locking the database: during this time, other clients will be able to read intermediate states of the output collection.如果nonAtomictrue,后期处理步骤将阻止MongoDB锁定数据库:在此期间,其他客户端将能够读取输出集合的中间状态。

Output Inline输出内联

Perform the map-reduce operation in memory and return the result. 在内存中执行映射缩减操作并返回结果。This option is the only available option for out on secondary members of replica sets.此选项是复制副本集的辅助成员的out的唯一可用的选项。

out: { inline: 1 }

The result must fit within the maximum size of a BSON document.结果必须在BSON文档的最大大小范围内。

Requirements for the finalize Functionfinalize函数的要求

The finalize function has the following prototype:finalize函数具有以下原型:

function(key, reducedValue) {
...
return modifiedObject;
}

The finalize function receives as its arguments a key value and the reducedValue from the reduce function. Be aware that:finalize函数从reduce函数接收一个key值和reducedValue作为其参数。请注意:

  • The finalize function should not access the database for any reason.finalize函数不应出于任何原因访问数据库。
  • The finalize function should be pure, or have no impact outside of the function (i.e. side effects.)finalize函数应该是纯函数,或者在函数之外没有影响(即副作用)
  • The finalize function can access the variables defined in the scope parameter.finalize函数可以访问scope参数中定义的变量。
  • Starting in MongoDB 4.4, mapReduce no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions. 从MongoDB 4.4开始,mapReduce不再支持不推荐使用的BSON Type JavaScript代码,其函数具有作用域(BSON Type 15)。The finalize function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13). finalize函数必须是BSON Type String(BSON Type 2)或BSON Type JavaScript(BSON Type13)。To pass constant values which will be accessible in the finalize function, use the scope parameter.要传递可在finalize函数中访问的常数值,请使用scope参数。


    The use of JavaScript code with scope for the finalize function has been deprecated since version 4.2.1.自4.2.1版本以来,一直不赞成使用具有finalize函数作用域的JavaScript代码。

Map-Reduce Examples

The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. 本节中的示例包括没有自定义聚合表达式的聚合管道备选方案。For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义表达式的备选方案,请参阅Map-Reduce到聚合管道转换示例

Create a sample collection orders with these documents:使用以下文档创建示例集合orders

db.orders.insertMany([
{ _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" },
{ _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" },
{ _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"},
{ _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }
])

Return the Total Price Per Customer返回每个客户的总价

Perform the map-reduce operation on the orders collection to group by the cust_id, and calculate the sum of the price for each cust_id:orders集合执行map-reduce操作,以cust_id进行分组,并计算每个cust_idprice之和:

  1. Define the map function to process each input document:定义映射函数以处理每个输入文档:

    • In the function, this refers to the document that the map-reduce operation is processing.在函数中,this引用map-reduce操作正在处理的文档。
    • The function maps the price to the cust_id for each document and emits the cust_id and price.该函数将每个文档的price映射到cust_id,并发出cust_idprice
    var mapFunction1 = function() {
    emit(this.cust_id, this.price);
    };
  2. Define the corresponding reduce function with two arguments keyCustId and valuesPrices:使用两个参数keyCustIdvaluesPrices定义相应的reduce函数:

    • The valuesPrices is an array whose elements are the price values emitted by the map function and grouped by keyCustId.valuesPrices是一个数组,其元素是map函数发出的price值,并按keyCustId分组。
    • The function reduces the valuesPrice array to the sum of its elements.该函数将valuesPrice数组的值减少为其元素的总和。
    var reduceFunction1 = function(keyCustId, valuesPrices) {
    return Array.sum(valuesPrices);
    };
  3. Perform map-reduce on all documents in the orders collection using the mapFunction1 map function and the reduceFunction1 reduce function:使用mapFunction1 map函数和reduceFunction1 reduce函数对订单集合中的所有文档执行map-reduce:

    db.orders.mapReduce(
    mapFunction1,
    reduceFunction1,
    { out: "map_reduce_example" }
    )

    This operation outputs the results to a collection named map_reduce_example. 此操作将结果输出到名为map_reduce_example的集合。If the map_reduce_example collection already exists, the operation will replace the contents with the results of this map-reduce operation.如果map_reduce_example集合已经存在,则该操作将用此map-reduce操作的结果替换内容。

  4. Query the map_reduce_example collection to verify the results:查询map_reduce_example集合以验证结果:

    db.map_reduce_example.find().sort( { _id: 1 } )

    The operation returns these documents:操作将返回以下文档:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }
Aggregation Alternative聚合备选方案

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写映射减少操作,而无需定义自定义函数:

db.orders.aggregate([
{ $group: { _id: "$cust_id", value: { $sum: "$price" } } },
{ $out: "agg_alternative_1" }
])
  1. The $group stage groups by the cust_id and calculates the value field (See also $sum). $group阶段根据cust_id进行分组,并计算value字段(另请参见$sum)。The value field contains the total price for each cust_id.value字段包含每个cust_id的总价。

    The stage output the following documents to the next stage:该阶段将以下文档输出到下一阶段:

    { "_id" : "Don Quis", "value" : 155 }
    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Busby Bee", "value" : 125 }
  2. Then, the $out writes the output to the collection agg_alternative_1. 然后,$out将输出写入集合agg_alternative_1Alternatively, you could use $merge instead of $out.或者,您可以使用$merge而不是$out
  3. Query the agg_alternative_1 collection to verify the results:查询agg_alternative_1集合以验证结果:

    db.agg_alternative_1.find().sort( { _id: 1 } )

    The operation returns the following documents:该操作返回以下文档:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }
Tip

See also: 另请参阅:

For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例

Calculate Order and Total Quantity with Average Quantity Per Item使用每个项目的平均数量计算订单和总数量

In the following example, you will see a map-reduce operation on the orders collection for all documents that have an ord_date value greater than or equal to 2020-03-01.在以下示例中,您将看到orders集合上的映射减少操作,该操作适用于ord_date值大于或等于2020-03-01的所有文档。

The operation in the example:示例中的操作:

  1. Groups by the item.sku field, and calculates the number of orders and the total quantity ordered for each sku.item.sku字段分组,并计算每个sku的订单数量和订购总量。
  2. Calculates the average quantity per order for each sku value and merges the results into the output collection.计算每个sku值的每个订单的平均数量,并将结果合并到输出集合中。

When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. 合并结果时,如果现有文档与新结果具有相同的键,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则操作将插入该文档。

Example steps:示例步骤:

  1. Define the map function to process each input document:定义映射函数以处理每个输入文档:

    • In the function, this refers to the document that the map-reduce operation is processing.在函数中,this引用map-reduce操作正在处理的文档。
    • For each item, the function associates the sku with a new object value that contains the count of 1 and the item qty for the order and emits the sku (stored in the key) and the value.对于每个项目,该函数将sku与一个新的对象value相关联,该值包含订单的count 1和项目qty,并发出sku(存储在key中)和value
     var mapFunction2 = function() {
    for (var idx = 0; idx < this.items.length; idx++) {
    var key = this.items[idx].sku;
    var value = { count: 1, qty: this.items[idx].qty };

    emit(key, value);
    }
    };
  2. Define the corresponding reduce function with two arguments keySKU and countObjVals:使用两个参数keySKUcountObjVals定义相应的reduce函数:

    • countObjVals is an array whose elements are the objects mapped to the grouped keySKU values passed by map function to the reducer function.是一个数组,其元素是映射到由map函数传递给reducer函数的分组keySKU值的对象。
    • The function reduces the countObjVals array to a single object reducedValue that contains the count and the qty fields.该函数将countObjVals数组缩减为单个对象reducedValue,该对象包含countqty字段。
    • In reducedVal, the count field contains the sum of the count fields from the individual array elements, and the qty field contains the sum of the qty fields from the individual array elements.reducedVal中,count字段包含单个数组元素的count字段之和,而qty字段包含单个数组元素的qty字段之和。
    var reduceFunction2 = function(keySKU, countObjVals) {
    reducedVal = { count: 0, qty: 0 };

    for (var idx = 0; idx < countObjVals.length; idx++) {
    reducedVal.count += countObjVals[idx].count;
    reducedVal.qty += countObjVals[idx].qty;
    }

    return reducedVal;
    };
  3. Define a finalize function with two arguments key and reducedVal. 定义一个带有两个参数keyreducedVal的finalize函数。The function modifies the reducedVal object to add a computed field named avg and returns the modified object:函数修改reducedVal对象以添加名为avg的计算字段,并返回修改后的对象:

    var finalizeFunction2 = function (key, reducedVal) {
    reducedVal.avg = reducedVal.qty/reducedVal.count;
    return reducedVal;
    };
  4. Perform the map-reduce operation on the orders collection using the mapFunction2, reduceFunction2, and finalizeFunction2 functions:使用mapFunction2reduceFunction2finalizeFunction2函数对订单集合执行map-reduce操作:

    db.orders.mapReduce(
    mapFunction2,
    reduceFunction2,
    {
    out: { merge: "map_reduce_example2" },
    query: { ord_date: { $gte: new Date("2020-03-01") } },
    finalize: finalizeFunction2
    }
    );

    This operation uses the query field to select only those documents with ord_date greater than or equal to new Date("2020-03-01"). Then it outputs the results to a collection map_reduce_example2.此操作使用query字段仅选择ord_date大于或等于new Date("2020-03-01")的文档。然后,它将结果输出到集合map_reduce_example2

    If the map_reduce_example2 collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. 如果map_reduce_example2集合已经存在,则该操作将把现有内容与此map-reduce操作的结果合并。That is, if an existing document has the same key as the new result, the operation overwrites the existing document. 也就是说,如果现有文档与新结果具有相同的键,则操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则操作将插入该文档。

  5. Query the map_reduce_example2 collection to verify the results:查询map_reduce_example2集合以验证结果:

    db.map_reduce_example2.find().sort( { _id: 1 } )

    The operation returns these documents:操作将返回以下文档:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Aggregation Alternative聚合备选方案

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写映射减少操作,而无需定义自定义函数:

db.orders.aggregate( [
{ $match: { ord_date: { $gte: new Date("2020-03-01") } } },
{ $unwind: "$items" },
{ $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } } },
{ $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } },
{ $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } }
] )
  1. The $match stage selects only those documents with ord_date greater than or equal to new Date("2020-03-01").$match阶段仅选择ord_date大于或等于new Date("2020-03-01")的文档。
  2. The $unwind stage breaks down the document by the items array field to output a document for each array element. $unwind阶段按items数组字段对文档进行分解,为每个数组元素输出一个文档。For example:例如:

    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    ...
  3. The $group stage groups by the items.sku, calculating for each sku:$group阶段按items.sku分组,为每个sku计算:

    • The qty field. The qty field contains theqty字段。qty字段包含
      total qty ordered per each items.sku (See $sum).每件items.sku的总订购qty(请参阅$sum)。
    • The orders_ids array. orders_ids数组。The orders_ids field contains anorders_ids字段包含
      array of distinct order _id's for the items.sku (See $addToSet).items.sku的不同顺序_id的数组(请参见$addToSet)。
    { "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
    { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
    { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
    { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
    { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }
  4. The $project stage reshapes the output document to mirror the map-reduce's output to have two fields _id and value. $project阶段重塑输出文档,以镜像map-reduce的输出,使其具有两个字段_idvalueThe $project sets:$project设置:
  5. The $unwind stage breaks down the document by the items array field to output a document for each array element. $unwind阶段按items数组字段对文档进行分解,为每个数组元素输出一个文档。For example:例如:

    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    ...
  6. The $group stage groups by the items.sku, calculating for each sku:$group阶段按items.sku分组,为每个sku计算:

    • The qty field. The qty field contains the total qty ordered per each items.sku using $sum.qty字段。qty字段包含使用$sum为每个items.sku订购的总数量。
    • The orders_ids array. The orders_ids field contains an array of distinct order _id's for the items.sku using $addToSet.orders_ids数组。orders_ids字段包含一个使用$addToSetitems.sku的不同order_id的数组。
    { "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
    { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
    { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
    { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
    { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }
  7. The $project stage reshapes the output document to mirror the map-reduce's output to have two fields _id and value. $project阶段重塑输出文档,以镜像map-reduce的输出,使其具有两个字段_idvalueThe $project sets:$project设置:

    • the value.count to the size of the orders_ids array using $size.使用$sizevalue.count设置为orders_ids数组的大小。
    • the value.qty to the qty field of input document.输入单据的qty字段的value.qty
    • the value.avg to the average number of qty per order using $divide and $size.value.avg是使用$divide$size的每个订单的平均数量。
    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
  8. Finally, the $merge writes the output to the collection agg_alternative_3. 最后,$merge将输出写入集合agg_alternative_3If an existing document has the same key _id as the new result, the operation overwrites the existing document. 如果现有文档具有与新结果相同的键_id,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则操作将插入该文档。
  9. Query the agg_alternative_3 collection to verify the results:查询agg_alternative_3集合以验证结果:

    db.agg_alternative_3.find().sort( { _id: 1 } )

    The operation returns the following documents:该操作返回以下文档:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Tip

See also: 另请参阅:

For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例

Output输出

The output of the db.collection.mapReduce() method is identical to that of the mapReduce command. db.collection.mapReduce()方法的输出与mapReduce命令的输出相同。See the Output section of the mapReduce command for information on the db.collection.mapReduce() output.有关db.collection.mapReduce()输出的信息,请参阅mapReduce命令的Output部分。

Restrictions限制

MongoDB drivers automatically set afterClusterTime for operations associated with causally consistent sessions. MongoDB驱动程序会为与因果一致会话相关联的操作自动设置afterClusterTimeStarting in MongoDB 4.2, the db.collection.mapReduce() no longer support afterClusterTime. As such, db.collection.mapReduce() cannot be associatd with causally consistent sessions.从MongoDB 4.2开始,db.collection.mapReduce()不再支持afterClusterTime。因此,db.collection.mapReduce()不能与因果一致的会话相关联。

Additional Information附加信息