$bucket (aggregation)
On this page本页内容
Definition定义
$bucket-
Categorizes incoming documents into groups, called buckets, based on a specified expression and bucket boundaries and outputs a document per each bucket.根据指定的表达式和桶边界,将传入的文档分类为称为bucket的组,并为每个桶输出一个文档。Each output document contains an每个输出文档都包含一个_idfield whose value specifies the inclusive lower bound of the bucket._id字段,其值指定桶的包含下界。The output option specifies the fields included in each output document.output选项指定每个输出文档中包含的字段。$bucketonly produces output documents for buckets that contain at least one input document.仅为包含至少一个输入文档的存储桶生成输出文档。
Considerations注意事项
$bucket and Memory Restrictions
The $bucket stage has a limit of 100 megabytes of RAM. $bucket阶段的RAM限制为100兆字节。By default, if the stage exceeds this limit, 默认情况下,如果阶段超过此限制,$bucket returns an error. To allow more space for stage processing, use the allowDiskUse option to enable aggregation pipeline stages to write data to temporary files.$bucket将返回一个错误。若要为阶段处理留出更多空间,请使用allowDiskUse选项启用聚合管道阶段以将数据写入临时文件。
See also: 另请参阅:
Syntax语法
{
$bucket: {
groupBy: <expression>,
boundaries: [ <lowerbound1>, <lowerbound2>, ... ],
default: <literal>,
output: {
<output1>: { <$accumulator expression> },
...
<outputN>: { <$accumulator expression> }
}
}
}
The $bucket document contains the following fields:$bucket文档包含以下字段:
groupBy | expression | $ and enclose it in quotes.$bucket includes a default specification, each input document must resolve the groupBy field path or expression to a value that falls within one of the ranges specified by the boundaries. $bucket包含default规范,否则每个输入文档必须将groupBy字段路径或表达式解析为一个位于boundaries指定的范围内的值。 |
boundaries | array | groupBy表达式的值数组,用于指定每个桶的边界。[ 10, NumberLong(20), NumberInt(30) ]
Example
[ 0, 5, 10 ] creates two buckets: [ 0, 5, 10 ]的数组创建两个桶:
|
default | literal | _id of an additional bucket that contains all documents whose groupBy expression result does not fall into a bucket specified by boundaries._id的文字,该存储桶包含groupBy表达式结果不属于boundaries指定存储桶的所有文档。groupBy expression to a value within one of the bucket ranges specified by boundaries or the operation throws an error.groupBy表达式解析为boundaries指定的某个桶范围内的值,否则操作将引发错误。default value must be less than the lowest boundaries value, or greater than or equal to the highest boundaries value.default值必须小于最低boundaries值,或大于或等于最高boundaries值。default value can be of a different type than the entries in boundaries. default值可以是与boundaries中的条目不同的类型。 |
output | document | _id field. _id字段外,还指定要包含在输出文档中的字段的文档。<outputfield1>: { <accumulator>: <expression1> },
output document, the operation returns a count field containing the number of documents in each bucket.output文档,则操作将返回一个count字段,该字段包含每个存储桶中的文档数。output document, only the fields specified in the document are returned; i.e. the count field is not returned unless it is explicitly included in the output document. output文档,则只返回文档中指定的字段;即,除非count字段明确包含在输出文档中,否则不会返回该字段。 |
Behavior行为
$bucket requires at least one of the following conditions to be met or the operation throws an error:要求至少满足以下条件之一,或者操作引发错误:
Each input document resolves the groupBy expression to a value within one of the bucket ranges specified by boundaries, or每个输入文档将groupBy表达式解析为boundaries指定的一个桶范围内的值,或者A default value is specified to bucket documents whose为groupByvalues are outside of theboundariesor of a different BSON type than the values inboundaries.groupBy值在boundaries之外或BSON类型与边界中的值不同的桶文档指定default值。
If the 如果groupBy expression resolves to an array or a document, $bucket arranges the input documents into buckets using the comparison logic from $sort.groupBy表达式解析为数组或文档,$bucket将使用$sort中的比较逻辑将输入文档排列到桶中。
Examples实例
Bucket by Year and Filter by Bucket Results逐年筛选和按筛选结果筛选
In 在mongosh, create a sample collection named artists with the following documents:mongosh中,用以下文件创建一个名为artists的样本集合:
db.artists.insertMany([
{ "_id" : 1, "last_name" : "Bernard", "first_name" : "Emil", "year_born" : 1868, "year_died" : 1941, "nationality" : "France" },
{ "_id" : 2, "last_name" : "Rippl-Ronai", "first_name" : "Joszef", "year_born" : 1861, "year_died" : 1927, "nationality" : "Hungary" },
{ "_id" : 3, "last_name" : "Ostroumova", "first_name" : "Anna", "year_born" : 1871, "year_died" : 1955, "nationality" : "Russia" },
{ "_id" : 4, "last_name" : "Van Gogh", "first_name" : "Vincent", "year_born" : 1853, "year_died" : 1890, "nationality" : "Holland" },
{ "_id" : 5, "last_name" : "Maurer", "first_name" : "Alfred", "year_born" : 1868, "year_died" : 1932, "nationality" : "USA" },
{ "_id" : 6, "last_name" : "Munch", "first_name" : "Edvard", "year_born" : 1863, "year_died" : 1944, "nationality" : "Norway" },
{ "_id" : 7, "last_name" : "Redon", "first_name" : "Odilon", "year_born" : 1840, "year_died" : 1916, "nationality" : "France" },
{ "_id" : 8, "last_name" : "Diriks", "first_name" : "Edvard", "year_born" : 1855, "year_died" : 1930, "nationality" : "Norway" }
])
The following operation groups the documents into buckets according to the 以下操作根据year_born field and filters based on the count of documents in the buckets:year_born字段将文档分组到bucket中,并根据bucket中的文档数进行筛选:
db.artists.aggregate( [
// First Stage
{
$bucket: {
groupBy: "$year_born", //Field to group by分组依据字段
boundaries: [ 1840, 1850, 1860, 1870, 1880 ], //Boundaries for the buckets桶的边界
default: "Other", //Bucket ID for documents which do not fall into a bucket不属于存储桶的文档的存储桶ID
output: { //Output for each bucket每个桶的输出
"count": { $sum: 1 },
"artists" :
{
$push: {
"name": { $concat: [ "$first_name", " ", "$last_name"] },
"year_born": "$year_born"
}
}
}
}
},
//Second Stage第二阶段
{
$match: { count: {$gt: 3} }
}
] )
First Stage第一阶段-
The$bucketstage groups the documents into buckets by theyear_bornfield. The buckets have the following boundaries:$bucket阶段根据year_born字段将文档分组到桶中。桶具有以下boundaries:[1840, 1850)with inclusive lowerbound具有包含下限1840and exclusive upper bound1850.1840和排除上限1850。[1850, 1860)with inclusive lowerbound具有包含下限1850and exclusive upper bound1860.1850和排除上限1860。[1860, 1870)with inclusive lowerbound具有包含下限1860and exclusive upper bound1870.1860和排除上限1870。[1870, 1880)with inclusive lowerbound具有包含下限1870and exclusive upper bound1880.1870和排除上限1880。If a document did not contain the如果文档不包含year_bornfield or itsyear_bornfield was outside the ranges above, it would be placed in the default bucket with the_idvalue"Other".year_born字段,或者其year_born字段超出上述范围,则它将被放置在_id值为"Other"的default桶中。
The stage includes the output document to determine the fields to return:该阶段包括用于确定要返回的字段的output文档:Field字段Description描述_idInclusive lower bound of the bucket.桶的包含下限。countCount of documents in the bucket.桶中的文档数。artistsArray of documents containing information on each artist in the bucket.包含bucket中每个艺术家信息的文档数组。Each document contains the artist's每个文档都包含艺术家的This stage passes the following documents to the next stage:此阶段将以下文件传递到下一阶段:{ "_id" : 1840, "count" : 1, "artists" : [ { "name" : "Odilon Redon", "year_born" : 1840 } ] }
{ "_id" : 1850, "count" : 2, "artists" : [ { "name" : "Vincent Van Gogh", "year_born" : 1853 },
{ "name" : "Edvard Diriks", "year_born" : 1855 } ] }
{ "_id" : 1860, "count" : 4, "artists" : [ { "name" : "Emil Bernard", "year_born" : 1868 },
{ "name" : "Joszef Rippl-Ronai", "year_born" : 1861 },
{ "name" : "Alfred Maurer", "year_born" : 1868 },
{ "name" : "Edvard Munch", "year_born" : 1863 } ] }
{ "_id" : 1870, "count" : 1, "artists" : [ { "name" : "Anna Ostroumova", "year_born" : 1871 } ] } Second Stage第二阶段-
The$matchstage filters the output from the previous stage to only return buckets which contain more than 3 documents.$match阶段筛选前一阶段的输出,只返回包含3个以上文档的桶。The operation returns the following document:该操作返回以下文档:{ "_id" : 1860, "count" : 4, "artists" :
[
{ "name" : "Emil Bernard", "year_born" : 1868 },
{ "name" : "Joszef Rippl-Ronai", "year_born" : 1861 },
{ "name" : "Alfred Maurer", "year_born" : 1868 },
{ "name" : "Edvard Munch", "year_born" : 1863 }
]
}
Use $bucket with $facet to Bucket by Multiple Fields将$bucket与$facet一起用于多个字段的桶
You can use the 您可以使用$facet stage to perform multiple $bucket aggregations in a single stage.$facet阶段在单个阶段中执行多个$bucket聚合。
In 在mongosh, create a sample collection named artwork with the following documents:mongosh中,使用以下文档创建一个名为artwork的样本集合:
db.artwork.insertMany([
{ "_id" : 1, "title" : "The Pillars of Society", "artist" : "Grosz", "year" : 1926,
"price" : NumberDecimal("199.99") },
{ "_id" : 2, "title" : "Melancholy III", "artist" : "Munch", "year" : 1902,
"price" : NumberDecimal("280.00") },
{ "_id" : 3, "title" : "Dancer", "artist" : "Miro", "year" : 1925,
"price" : NumberDecimal("76.04") },
{ "_id" : 4, "title" : "The Great Wave off Kanagawa", "artist" : "Hokusai",
"price" : NumberDecimal("167.30") },
{ "_id" : 5, "title" : "The Persistence of Memory", "artist" : "Dali", "year" : 1931,
"price" : NumberDecimal("483.00") },
{ "_id" : 6, "title" : "Composition VII", "artist" : "Kandinsky", "year" : 1913,
"price" : NumberDecimal("385.00") },
{ "_id" : 7, "title" : "The Scream", "artist" : "Munch", "year" : 1893
/* No price*/ },
{ "_id" : 8, "title" : "Blue Flower", "artist" : "O'Keefe", "year" : 1918,
"price" : NumberDecimal("118.42") }
])
The following operation uses two 以下操作使用$bucket stages within a $facet stage to create two groupings, one by price and the other by year:$facet阶段中的两个$bucket阶段来创建两个分组,一个按price,另一个按year:
db.artwork.aggregate( [
{
$facet: { //Top-level $facet stage顶级$facet阶段
"price": [ //Output field输出字段1
{
$bucket: {
groupBy: "$price", //Field to group by分组依据字段
boundaries: [ 0, 200, 400 ], //Boundaries for the buckets桶的边界
default: "Other", //Bucket ID for documents which do not fall into a bucket不属于存储桶的文档的存储桶ID
output: { //Output for each bucket每个桶的输出
"count": { $sum: 1 },
"artwork" : { $push: { "title": "$title", "price": "$price" } },
"averagePrice": { $avg: "$price" }
}
}
}
],
"year": [ //Output field输出字段2
{
$bucket: {
groupBy: "$year", //Field to group by分组依据字段
boundaries: [ 1890, 1910, 1920, 1940 ], //Boundaries for the buckets桶的边界
default: "Unknown", //Bucket ID for documents which do not fall into a bucket不属于存储桶的文档的存储桶ID
output: { //Output for each bucket每个桶的输出
"count": { $sum: 1 },
"artwork": { $push: { "title": "$title", "year": "$year" } }
}
}
}
]
}
}
] )
First Facet第一位面-
The first facet groups the input documents by第一个位面按price. The buckets have the following boundaries:price对输入文档进行分组。桶具有以下边界:[0, 200)with inclusive lowerbound具有包含下限0and exclusive upper bound200.0和排除上限200。[200, 400)with inclusive lowerbound具有包含下限200and exclusive upper bound400.200和排除上限400。"Other", thedefaultbucket containing documents without prices or prices outside the ranges above."Other",包含没有价格或价格超出上述范围的文档的default存储桶。
The$bucketstage includes the output document to determine the fields to return:$bucket阶段包括用于确定要返回的字段的output文档:Field字段Description描述_idInclusive lower bound of the bucket.桶的包含下限。countCount of documents in the bucket.存储桶中的文档数。artworkArray of documents containing information on each artwork in the bucket.一组文档,其中包含有关桶中每个艺术品的信息。averagePriceEmploys the使用$avgoperator to display the average price of all artwork in the bucket.$avg运算符来显示桶中所有艺术品的平均价格。 Second Facet第二位面-
The second facet groups the input documents by第二个方面按year.year对输入文档进行分组。The buckets have the following boundaries:桶具有以下边界:[1890, 1910)with inclusive lowerbound具有包含下界1890and exclusive upper bound1910.1890和排除上界1910。[1910, 1920)with inclusive lowerbound具有包含下界1910and exclusive upper bound1920.1910和排除上界1920。[1920, 1940)with inclusive lowerbound具有包含下界1920and exclusive upper bound1940.1920和排除上界1940。"Unknown", the,defaultbucket containing documents without years or years outside the ranges above.default桶,包含没有年份或年份超出上述范围的文档。
The$bucketstage includes the output document to determine the fields to return:$bucket阶段包括用于确定要返回的字段的output文档:Field字段Description描述countCount of documents in the bucket.存储桶中的文档数。artworkArray of documents containing information on each artwork in the bucket.一组文档,其中包含有关bucket中每个艺术品的信息。 Output输出-
The operation returns the following document:该操作返回以下文档:{
"price" : [ //Output of first facet第一位面的输出
{
"_id" : 0,
"count" : 4,
"artwork" : [
{ "title" : "The Pillars of Society", "price" : NumberDecimal("199.99") },
{ "title" : "Dancer", "price" : NumberDecimal("76.04") },
{ "title" : "The Great Wave off Kanagawa", "price" : NumberDecimal("167.30") },
{ "title" : "Blue Flower", "price" : NumberDecimal("118.42") }
],
"averagePrice" : NumberDecimal("140.4375")
},
{
"_id" : 200,
"count" : 2,
"artwork" : [
{ "title" : "Melancholy III", "price" : NumberDecimal("280.00") },
{ "title" : "Composition VII", "price" : NumberDecimal("385.00") }
],
"averagePrice" : NumberDecimal("332.50")
},
{
//Includes documents without prices and prices greater than 400包括没有价格和价格超过400的文档
"_id" : "Other",
"count" : 2,
"artwork" : [
{ "title" : "The Persistence of Memory", "price" : NumberDecimal("483.00") },
{ "title" : "The Scream" }
],
"averagePrice" : NumberDecimal("483.00")
}
],
"year" : [ //Output of second facet第二位面的输出
{
"_id" : 1890,
"count" : 2,
"artwork" : [
{ "title" : "Melancholy III", "year" : 1902 },
{ "title" : "The Scream", "year" : 1893 }
]
},
{
"_id" : 1910,
"count" : 2,
"artwork" : [
{ "title" : "Composition VII", "year" : 1913 },
{ "title" : "Blue Flower", "year" : 1918 }
]
},
{
"_id" : 1920,
"count" : 3,
"artwork" : [
{ "title" : "The Pillars of Society", "year" : 1926 },
{ "title" : "Dancer", "year" : 1925 },
{ "title" : "The Persistence of Memory", "year" : 1931 }
]
},
{
//Includes documents without a year包括没有年份的文档
"_id" : "Unknown",
"count" : 1,
"artwork" : [
{ "title" : "The Great Wave off Kanagawa" }
]
}
]
}