Docs HomeMongoDB Manual

$bucket (aggregation)

Definition定义

$bucket

Categorizes incoming documents into groups, called buckets, based on a specified expression and bucket boundaries and outputs a document per each bucket. 根据指定的表达式和桶边界,将传入的文档分类为称为bucket的组,并为每个桶输出一个文档。Each output document contains an _id field whose value specifies the inclusive lower bound of the bucket. 每个输出文档都包含一个_id字段,其值指定桶的包含下界。The output option specifies the fields included in each output document.output选项指定每个输出文档中包含的字段。

$bucket only produces output documents for buckets that contain at least one input document.仅为包含至少一个输入文档的存储桶生成输出文档。

Considerations注意事项

$bucket and Memory Restrictions

The $bucket stage has a limit of 100 megabytes of RAM. $bucket阶段的RAM限制为100兆字节。By default, if the stage exceeds this limit, $bucket returns an error. To allow more space for stage processing, use the allowDiskUse option to enable aggregation pipeline stages to write data to temporary files.默认情况下,如果阶段超过此限制,$bucket将返回一个错误。若要为阶段处理留出更多空间,请使用allowDiskUse选项启用聚合管道阶段以将数据写入临时文件。

Tip

Syntax语法

{
$bucket: {
groupBy: <expression>,
boundaries: [ <lowerbound1>, <lowerbound2>, ... ],
default: <literal>,
output: {
<output1>: { <$accumulator expression> },
...
<outputN>: { <$accumulator expression> }
}
}
}

The $bucket document contains the following fields:$bucket文档包含以下字段:

Field字段Type类型Description描述
groupByexpressionAn expression to group documents by. 文档分组依据的表达式To specify a field path, prefix the field name with a dollar sign $ and enclose it in quotes.若要指定字段路径,请在字段名称前面加上美元符号$,并将其括在引号中。
Unless $bucket includes a default specification, each input document must resolve the groupBy field path or expression to a value that falls within one of the ranges specified by the boundaries. 除非$bucket包含default规范,否则每个输入文档必须将groupBy字段路径或表达式解析为一个位于boundaries指定的范围内的值。
boundariesarrayAn array of values based on the groupBy expression that specify the boundaries for each bucket. 一个基于groupBy表达式的值数组,用于指定每个桶的边界。Each adjacent pair of values acts as the inclusive lower boundary and the exclusive upper boundary for the bucket. You must specify at least two boundaries.每个相邻的值对充当桶的包含下边界和排除上边界。必须至少指定两个边界。
The specified values must be in ascending order and all of the same type. 指定的值必须按升序排列,并且都属于同一类型The exception is if the values are of mixed numeric types, such as:如果值是混合数字类型,则会出现例外,例如:
[ 10, NumberLong(20), NumberInt(30) ]
Example
An array of [ 0, 5, 10 ] creates two buckets: [ 0, 5, 10 ]的数组创建两个桶:
  • [0, 5) with inclusive lower bound 0 and exclusive upper bound 5.具有包含下界0和排除上界5
  • [5, 10) with inclusive lower bound 5 and exclusive upper bound 10.具有包含下界5和排除上界10
defaultliteralOptional.可选的。A literal that specifies the _id of an additional bucket that contains all documents whose groupBy expression result does not fall into a bucket specified by boundaries.指定附加存储桶的_id的文字,该存储桶包含groupBy表达式结果不属于boundaries指定存储桶的所有文档。
If unspecified, each input document must resolve the groupBy expression to a value within one of the bucket ranges specified by boundaries or the operation throws an error.如果未指定,则每个输入文档必须将groupBy表达式解析为boundaries指定的某个桶范围内的值,否则操作将引发错误。
The default value must be less than the lowest boundaries value, or greater than or equal to the highest boundaries value.default值必须小于最低boundaries值,或大于或等于最高boundaries值。
The default value can be of a different type than the entries in boundaries. default值可以是与boundaries中的条目不同的类型
outputdocumentOptional.可选的。A document that specifies the fields to include in the output documents in addition to the _id field. 除了_id字段外,还指定要包含在输出文档中的字段的文档。To specify the field to include, you must use accumulator expressions. 若要指定要包含的字段,必须使用累加器表达式
<outputfield1>: { <accumulator>: <expression1> },
...
<outputfieldN>: { <accumulator>: <expressionN> }
If you do not specify an output document, the operation returns a count field containing the number of documents in each bucket.如果未指定output文档,则操作将返回一个count字段,该字段包含每个存储桶中的文档数。
If you specify an output document, only the fields specified in the document are returned; i.e. the count field is not returned unless it is explicitly included in the output document. 如果指定output文档,则只返回文档中指定的字段;即,除非count字段明确包含在输出文档中,否则不会返回该字段。

Behavior行为

$bucket requires at least one of the following conditions to be met or the operation throws an error:要求至少满足以下条件之一,或者操作引发错误:

  • Each input document resolves the groupBy expression to a value within one of the bucket ranges specified by boundaries, or每个输入文档将groupBy表达式解析为boundaries指定的一个桶范围内的值,或者
  • A default value is specified to bucket documents whose groupBy values are outside of the boundaries or of a different BSON type than the values in boundaries.groupBy值在boundaries之外或BSON类型与边界中的值不同的桶文档指定default值。

If the groupBy expression resolves to an array or a document, $bucket arranges the input documents into buckets using the comparison logic from $sort.如果groupBy表达式解析为数组或文档,$bucket将使用$sort中的比较逻辑将输入文档排列到桶中。

Examples实例

Bucket by Year and Filter by Bucket Results逐年筛选和按筛选结果筛选

In mongosh, create a sample collection named artists with the following documents:mongosh中,用以下文件创建一个名为artists的样本集合:

db.artists.insertMany([
{ "_id" : 1, "last_name" : "Bernard", "first_name" : "Emil", "year_born" : 1868, "year_died" : 1941, "nationality" : "France" },
{ "_id" : 2, "last_name" : "Rippl-Ronai", "first_name" : "Joszef", "year_born" : 1861, "year_died" : 1927, "nationality" : "Hungary" },
{ "_id" : 3, "last_name" : "Ostroumova", "first_name" : "Anna", "year_born" : 1871, "year_died" : 1955, "nationality" : "Russia" },
{ "_id" : 4, "last_name" : "Van Gogh", "first_name" : "Vincent", "year_born" : 1853, "year_died" : 1890, "nationality" : "Holland" },
{ "_id" : 5, "last_name" : "Maurer", "first_name" : "Alfred", "year_born" : 1868, "year_died" : 1932, "nationality" : "USA" },
{ "_id" : 6, "last_name" : "Munch", "first_name" : "Edvard", "year_born" : 1863, "year_died" : 1944, "nationality" : "Norway" },
{ "_id" : 7, "last_name" : "Redon", "first_name" : "Odilon", "year_born" : 1840, "year_died" : 1916, "nationality" : "France" },
{ "_id" : 8, "last_name" : "Diriks", "first_name" : "Edvard", "year_born" : 1855, "year_died" : 1930, "nationality" : "Norway" }
])

The following operation groups the documents into buckets according to the year_born field and filters based on the count of documents in the buckets:以下操作根据year_born字段将文档分组到bucket中,并根据bucket中的文档数进行筛选:

db.artists.aggregate( [
// First Stage
{
$bucket: {
groupBy: "$year_born", // Field to group by分组依据字段
boundaries: [ 1840, 1850, 1860, 1870, 1880 ], // Boundaries for the buckets桶的边界
default: "Other", // Bucket ID for documents which do not fall into a bucket不属于存储桶的文档的存储桶ID
output: { // Output for each bucket每个桶的输出
"count": { $sum: 1 },
"artists" :
{
$push: {
"name": { $concat: [ "$first_name", " ", "$last_name"] },
"year_born": "$year_born"
}
}
}
}
},
// Second Stage第二阶段
{
$match: { count: {$gt: 3} }
}
] )
First Stage第一阶段

The $bucket stage groups the documents into buckets by the year_born field. The buckets have the following boundaries:$bucket阶段根据year_born字段将文档分组到桶中。桶具有以下boundaries

  • [1840, 1850) with inclusive lowerbound 1840 and exclusive upper bound 1850.具有包含下限1840和排除上限1850
  • [1850, 1860) with inclusive lowerbound 1850 and exclusive upper bound 1860.具有包含下限1850和排除上限1860
  • [1860, 1870) with inclusive lowerbound 1860 and exclusive upper bound 1870.具有包含下限1860和排除上限1870
  • [1870, 1880) with inclusive lowerbound 1870 and exclusive upper bound 1880.具有包含下限1870和排除上限1880
  • If a document did not contain the year_born field or its year_born field was outside the ranges above, it would be placed in the default bucket with the _id value "Other".如果文档不包含year_born字段,或者其year_born字段超出上述范围,则它将被放置在_id值为"Other"default桶中。

The stage includes the output document to determine the fields to return:该阶段包括用于确定要返回的字段的output文档:

Field字段Description描述
_idInclusive lower bound of the bucket.桶的包含下限。
countCount of documents in the bucket.桶中的文档数。
artistsArray of documents containing information on each artist in the bucket. 包含bucket中每个艺术家信息的文档数组。Each document contains the artist's 每个文档都包含艺术家的
  • name, which is a concatenation (i.e. $concat) of the artist's first_name and last_name.name,它是艺术家的first_namelast_name的串联(即$concat)。
  • year_born

This stage passes the following documents to the next stage:此阶段将以下文件传递到下一阶段:

{ "_id" : 1840, "count" : 1, "artists" : [ { "name" : "Odilon Redon", "year_born" : 1840 } ] }

{ "_id" : 1850, "count" : 2, "artists" : [ { "name" : "Vincent Van Gogh", "year_born" : 1853 },
{ "name" : "Edvard Diriks", "year_born" : 1855 } ] }

{ "_id" : 1860, "count" : 4, "artists" : [ { "name" : "Emil Bernard", "year_born" : 1868 },
{ "name" : "Joszef Rippl-Ronai", "year_born" : 1861 },
{ "name" : "Alfred Maurer", "year_born" : 1868 },
{ "name" : "Edvard Munch", "year_born" : 1863 } ] }

{ "_id" : 1870, "count" : 1, "artists" : [ { "name" : "Anna Ostroumova", "year_born" : 1871 } ] }
Second Stage第二阶段

The $match stage filters the output from the previous stage to only return buckets which contain more than 3 documents.$match阶段筛选前一阶段的输出,只返回包含3个以上文档的桶。

The operation returns the following document:该操作返回以下文档:

{ "_id" : 1860, "count" : 4, "artists" :
[
{ "name" : "Emil Bernard", "year_born" : 1868 },
{ "name" : "Joszef Rippl-Ronai", "year_born" : 1861 },
{ "name" : "Alfred Maurer", "year_born" : 1868 },
{ "name" : "Edvard Munch", "year_born" : 1863 }
]
}

Use $bucket with $facet to Bucket by Multiple Fields$bucket$facet一起用于多个字段的桶

You can use the $facet stage to perform multiple $bucket aggregations in a single stage.您可以使用$facet阶段在单个阶段中执行多个$bucket聚合。

In mongosh, create a sample collection named artwork with the following documents:mongosh中,使用以下文档创建一个名为artwork的样本集合:

db.artwork.insertMany([
{ "_id" : 1, "title" : "The Pillars of Society", "artist" : "Grosz", "year" : 1926,
"price" : NumberDecimal("199.99") },
{ "_id" : 2, "title" : "Melancholy III", "artist" : "Munch", "year" : 1902,
"price" : NumberDecimal("280.00") },
{ "_id" : 3, "title" : "Dancer", "artist" : "Miro", "year" : 1925,
"price" : NumberDecimal("76.04") },
{ "_id" : 4, "title" : "The Great Wave off Kanagawa", "artist" : "Hokusai",
"price" : NumberDecimal("167.30") },
{ "_id" : 5, "title" : "The Persistence of Memory", "artist" : "Dali", "year" : 1931,
"price" : NumberDecimal("483.00") },
{ "_id" : 6, "title" : "Composition VII", "artist" : "Kandinsky", "year" : 1913,
"price" : NumberDecimal("385.00") },
{ "_id" : 7, "title" : "The Scream", "artist" : "Munch", "year" : 1893
/* No price*/ },
{ "_id" : 8, "title" : "Blue Flower", "artist" : "O'Keefe", "year" : 1918,
"price" : NumberDecimal("118.42") }
])

The following operation uses two $bucket stages within a $facet stage to create two groupings, one by price and the other by year:以下操作使用$facet阶段中的两个$bucket阶段来创建两个分组,一个按price,另一个按year

db.artwork.aggregate( [
{
$facet: { // Top-level $facet stage顶级$facet阶段
"price": [ // Output field 输出字段1
{
$bucket: {
groupBy: "$price", // Field to group by分组依据字段
boundaries: [ 0, 200, 400 ], // Boundaries for the buckets桶的边界
default: "Other", // Bucket ID for documents which do not fall into a bucket不属于存储桶的文档的存储桶ID
output: { // Output for each bucket每个桶的输出
"count": { $sum: 1 },
"artwork" : { $push: { "title": "$title", "price": "$price" } },
"averagePrice": { $avg: "$price" }
}
}
}
],
"year": [ // Output field 输出字段2
{
$bucket: {
groupBy: "$year", // Field to group by分组依据字段
boundaries: [ 1890, 1910, 1920, 1940 ], // Boundaries for the buckets桶的边界
default: "Unknown", // Bucket ID for documents which do not fall into a bucket不属于存储桶的文档的存储桶ID
output: { // Output for each bucket每个桶的输出
"count": { $sum: 1 },
"artwork": { $push: { "title": "$title", "year": "$year" } }
}
}
}
]
}
}
] )
First Facet第一位面

The first facet groups the input documents by price. The buckets have the following boundaries:第一个位面按price对输入文档进行分组。桶具有以下边界:

  • [0, 200) with inclusive lowerbound 0 and exclusive upper bound 200.具有包含下限0和排除上限200
  • [200, 400) with inclusive lowerbound 200 and exclusive upper bound 400.具有包含下限200和排除上限400
  • "Other", the default bucket containing documents without prices or prices outside the ranges above."Other",包含没有价格或价格超出上述范围的文档的default存储桶。

The $bucket stage includes the output document to determine the fields to return:$bucket阶段包括用于确定要返回的字段的output文档:

Field字段Description描述
_idInclusive lower bound of the bucket.桶的包含下限。
countCount of documents in the bucket.存储桶中的文档数。
artworkArray of documents containing information on each artwork in the bucket.一组文档,其中包含有关桶中每个艺术品的信息。
averagePriceEmploys the $avg operator to display the average price of all artwork in the bucket.使用$avg运算符来显示桶中所有艺术品的平均价格。
Second Facet第二位面

The second facet groups the input documents by year. 第二个方面按year对输入文档进行分组。The buckets have the following boundaries:桶具有以下边界:

  • [1890, 1910) with inclusive lowerbound 1890 and exclusive upper bound 1910.具有包含下界1890和排除上界1910
  • [1910, 1920) with inclusive lowerbound 1910 and exclusive upper bound 1920.具有包含下界1910和排除上界1920
  • [1920, 1940) with inclusive lowerbound 1920 and exclusive upper bound 1940.具有包含下界1920和排除上界1940
  • "Unknown", the default bucket containing documents without years or years outside the ranges above.default桶,包含没有年份或年份超出上述范围的文档。

The $bucket stage includes the output document to determine the fields to return:$bucket阶段包括用于确定要返回的字段的output文档:

Field字段Description描述
countCount of documents in the bucket.存储桶中的文档数。
artworkArray of documents containing information on each artwork in the bucket.一组文档,其中包含有关bucket中每个艺术品的信息。
Output输出

The operation returns the following document:该操作返回以下文档:

{
"price" : [ // Output of first facet第一位面的输出
{
"_id" : 0,
"count" : 4,
"artwork" : [
{ "title" : "The Pillars of Society", "price" : NumberDecimal("199.99") },
{ "title" : "Dancer", "price" : NumberDecimal("76.04") },
{ "title" : "The Great Wave off Kanagawa", "price" : NumberDecimal("167.30") },
{ "title" : "Blue Flower", "price" : NumberDecimal("118.42") }
],
"averagePrice" : NumberDecimal("140.4375")
},
{
"_id" : 200,
"count" : 2,
"artwork" : [
{ "title" : "Melancholy III", "price" : NumberDecimal("280.00") },
{ "title" : "Composition VII", "price" : NumberDecimal("385.00") }
],
"averagePrice" : NumberDecimal("332.50")
},
{
// Includes documents without prices and prices greater than 400包括没有价格和价格超过400的文档
"_id" : "Other",
"count" : 2,
"artwork" : [
{ "title" : "The Persistence of Memory", "price" : NumberDecimal("483.00") },
{ "title" : "The Scream" }
],
"averagePrice" : NumberDecimal("483.00")
}
],
"year" : [ // Output of second facet第二位面的输出
{
"_id" : 1890,
"count" : 2,
"artwork" : [
{ "title" : "Melancholy III", "year" : 1902 },
{ "title" : "The Scream", "year" : 1893 }
]
},
{
"_id" : 1910,
"count" : 2,
"artwork" : [
{ "title" : "Composition VII", "year" : 1913 },
{ "title" : "Blue Flower", "year" : 1918 }
]
},
{
"_id" : 1920,
"count" : 3,
"artwork" : [
{ "title" : "The Pillars of Society", "year" : 1926 },
{ "title" : "Dancer", "year" : 1925 },
{ "title" : "The Persistence of Memory", "year" : 1931 }
]
},
{
// Includes documents without a year包括没有年份的文档
"_id" : "Unknown",
"count" : 1,
"artwork" : [
{ "title" : "The Great Wave off Kanagawa" }
]
}
]
}
Tip

See also: 另请参阅:

$bucketAuto