$graphLookup (aggregation)
On this page本页内容
Definition定义
$graphLookupChanged in version 5.1.5.1版更改。Performs a recursive search on a collection, with options for restricting the search by recursion depth and query filter.对集合执行递归搜索,并提供按递归深度和查询筛选器限制搜索的选项。The$graphLookupsearch process is summarized below:$graphLookup搜索过程总结如下:Input documents flow into the输入文档流入聚合操作的$graphLookupstage of an aggregation operation.$graphLookup阶段。$graphLookuptargets the search to the collection designated by the将搜索目标定为fromparameter (see below for full list of search parameters).from参数指定的集合(有关搜索参数的完整列表,请参阅下文)。For each input document, the search begins with the value designated by对于每个输入文档,搜索从startWith.startWith指定的值开始。$graphLookupmatches the将startWithvalue against the field designated byconnectToFieldin other documents in thefromcollection.startWith值与from集合中其他文档中connectToField指定的字段相匹配。For each matching document,对于每个匹配的文档,$graphLookuptakes the value of theconnectFromFieldand checks every document in thefromcollection for a matchingconnectToFieldvalue.$graphLookup获取connectFromField的值,并在from集合中的每个文档中检查匹配的connectToField值。For each match,对于每个匹配,$graphLookupadds the matching document in thefromcollection to an array field named by theasparameter.$graphLookup将from集合中的匹配文档添加到由as参数命名的数组字段中。This step continues recursively until no more matching documents are found, or until the operation reaches a recursion depth specified by the此步骤将递归地继续,直到找不到更多匹配的文档,或者直到操作达到maxDepthparameter.maxDepth参数指定的递归深度。$graphLookupthen appends the array field to the input document.然后将数组字段附加到输入文档中。$graphLookupreturns results after completing its search on all input documents.在完成对所有输入文档的搜索后返回结果。
$graphLookuphas the following prototype form:具有以下原型形式:{
$graphLookup: {
from: <collection>,
startWith: <expression>,
connectFromField: <string>,
connectToField: <string>,
as: <string>,
maxDepth: <number>,
depthField: <string>,
restrictSearchWithMatch: <document>
}
}$graphLookuptakes a document with the following fields:获取具有以下字段的文档:Field字段Description描述fromTarget collection for the要搜索的$graphLookupoperation to search, recursively matching theconnectFromFieldto theconnectToField.$graphLookup操作的目标集合,递归地将connectFromField与connectToField匹配。Thefromcollection must be in the same database as any other collections used in the operation.from集合必须与操作中使用的任何其他集合位于同一数据库中。
Starting in MongoDB 5.1, the collection specified in the从MongoDB 5.1开始,可以对fromparameter can be sharded.from参数中指定的集合进行分片。startWithExpression that specifies the value of the表达式,指定用于启动递归搜索的connectFromFieldwith which to start the recursive search.connectFromField的值。Optionally,可选地,startWithmay be array of values, each of which is individually followed through the traversal process.startWith可以是值的数组,每个值在遍历过程中都单独跟随。connectFromFieldField name whose value字段名,其值$graphLookupuses to recursively match against theconnectToFieldof other documents in the collection.$graphLookup用于递归匹配集合中其他文档的connectToField。If the value is an array, each element is individually followed through the traversal process.如果该值是一个数组,则每个元素都将在遍历过程中单独跟随。connectToFieldField name in other documents against which to match the value of the field specified by the与connectFromFieldparameter.connectFromField参数指定的字段值匹配的其他文档中的字段名称。asName of the array field added to each output document.添加到每个输出文档的数组字段的名称。Contains the documents traversed in the包含在$graphLookupstage to reach the document.$graphLookup阶段中为访问文档而遍历的文档。NoteDocuments returned in the在asfield are not guaranteed to be in any order.as字段中返回的文档不保证按任何顺序排列。maxDepthOptional.可选的。Non-negative integral number specifying the maximum recursion depth.指定最大递归深度的非负整数。depthFieldOptional.可选的。Name of the field to add to each traversed document in the search path.要添加到搜索路径中每个已遍历文档的字段的名称。The value of this field is the recursion depth for the document, represented as a此字段的值是文档的递归深度,表示为NumberLong.NumberLong。Recursion depth value starts at zero, so the first lookup corresponds to zero depth.递归深度值从零开始,因此第一次查找对应于零深度。restrictSearchWithMatchOptional.可选的。A document specifying additional conditions for the recursive search.为递归搜索指定附加条件的文档。The syntax is identical to query filter syntax.语法与查询筛选器语法相同。NoteYou cannot use any aggregation expression in this filter.不能在此筛选器中使用任何聚合表达式。For example, a query document such as例如,查询文档:{ lastName: { $ne: "$lastName" } }will not work in this context to find documents in which the将无法在此上下文中查找lastNamevalue is different from thelastNamevalue of the input document, because"$lastName"will act as a string literal, not a field path.lastName值与输入文档的lastName值不同的文档,因为"$lastName"将充当字符串文本,而不是字段路径。
Considerations注意事项
Sharded Collections分片集合
Starting in MongoDB 5.1, you can specify sharded collections in the 从MongoDB 5.1开始,您可以在from parameter of $graphLookup stages.$graphLookup阶段的from参数中指定分片集合。
Max Depth最大深度
Setting the 将maxDepth field to 0 is equivalent to a non-recursive $graphLookup search stage.maxDepth字段设置为0相当于非递归的$graphLookup搜索阶段。
Memory内存
The $graphLookup stage must stay within the 100 megabyte memory limit. $graphLookup阶段必须保持在100兆字节内存限制内。If 如果为allowDiskUse: true is specified for the aggregate() operation, the $graphLookup stage ignores the option. aggregate()操作指定了allowDiskUse: true,则$graphLookup阶段将忽略该选项。If there are other stages in the 如果aggregate() operation, allowDiskUse: true option is in effect for these other stages.aggregate()操作中还有其他阶段,则allowDiskUse:true选项对这些其他阶段有效。
See aggregration pipeline limitations for more information.有关更多信息,请参阅聚合管道限制。
Views and Collation视图和排序
If performing an aggregation that involves multiple views, such as with 如果执行涉及多个视图的聚合,例如使用$lookup or $graphLookup, the views must have the same collation.$lookup或$graphLookup,则这些视图必须具有相同的排序规则。
Examples实例
Within a Single Collection在单个集合中
A collection named 名为employees has the following documents:employees的集合包含以下文档:
{ "_id" : 1, "name" : "Dev" }
{ "_id" : 2, "name" : "Eliot", "reportsTo" : "Dev" }
{ "_id" : 3, "name" : "Ron", "reportsTo" : "Eliot" }
{ "_id" : 4, "name" : "Andrew", "reportsTo" : "Eliot" }
{ "_id" : 5, "name" : "Asya", "reportsTo" : "Ron" }
{ "_id" : 6, "name" : "Dan", "reportsTo" : "Andrew" }
The following 以下$graphLookup operation recursively matches on the reportsTo and name fields in the employees collection, returning the reporting hierarchy for each person:$graphLookup操作递归匹配employees集合中的reportsTo和name字段,返回每个人的报告层次结构:
db.employees.aggregate( [
{
$graphLookup: {
from: "employees",
startWith: "$reportsTo",
connectFromField: "reportsTo",
connectToField: "name",
as: "reportingHierarchy"
}
}
] )
The operation returns the following:该操作返回以下内容:
{
"_id" : 1,
"name" : "Dev",
"reportingHierarchy" : [ ]
}
{
"_id" : 2,
"name" : "Eliot",
"reportsTo" : "Dev",
"reportingHierarchy" : [
{ "_id" : 1, "name" : "Dev" }
]
}
{
"_id" : 3,
"name" : "Ron",
"reportsTo" : "Eliot",
"reportingHierarchy" : [
{ "_id" : 1, "name" : "Dev" },
{ "_id" : 2, "name" : "Eliot", "reportsTo" : "Dev" }
]
}
{
"_id" : 4,
"name" : "Andrew",
"reportsTo" : "Eliot",
"reportingHierarchy" : [
{ "_id" : 1, "name" : "Dev" },
{ "_id" : 2, "name" : "Eliot", "reportsTo" : "Dev" }
]
}
{
"_id" : 5,
"name" : "Asya",
"reportsTo" : "Ron",
"reportingHierarchy" : [
{ "_id" : 1, "name" : "Dev" },
{ "_id" : 2, "name" : "Eliot", "reportsTo" : "Dev" },
{ "_id" : 3, "name" : "Ron", "reportsTo" : "Eliot" }
]
}
{
"_id" : 6,
"name" : "Dan",
"reportsTo" : "Andrew",
"reportingHierarchy" : [
{ "_id" : 1, "name" : "Dev" },
{ "_id" : 2, "name" : "Eliot", "reportsTo" : "Dev" },
{ "_id" : 4, "name" : "Andrew", "reportsTo" : "Eliot" }
]
}
The following table provides a traversal path for the document 下表提供了文档{ "_id" : 5, "name" : "Asya", "reportsTo" : "Ron" }:{ "_id" : 5, "name" : "Asya", "reportsTo" : "Ron" }的遍历路径:
| Start value | reportsTo value of the document: reportsTo值:{ ... "reportsTo" : "Ron" }
|
|---|---|
| Depth 0 |
{ "_id" : 3, "name" : "Ron", "reportsTo" : "Eliot" }
|
| Depth 1 |
{ "_id" : 2, "name" : "Eliot", "reportsTo" : "Dev" }
|
| Depth 2 |
{ "_id" : 1, "name" : "Dev" }
|
The output generates the hierarchy 输出生成层次结构Asya -> Ron -> Eliot -> Dev.Asya -> Ron -> Eliot -> Dev。
Across Multiple Collections跨多个集合
Like 与$lookup, $graphLookup can access another collection in the same database.$lookup一样,$graphLookup可以访问同一数据库中的另一个集合。
For example, create a database with two collections:例如,创建一个包含两个集合的数据库:
An包含以下文件的airportscollection with the following documents:airports集合:db.airports.insertMany( [
{ "_id" : 0, "airport" : "JFK", "connects" : [ "BOS", "ORD" ] },
{ "_id" : 1, "airport" : "BOS", "connects" : [ "JFK", "PWM" ] },
{ "_id" : 2, "airport" : "ORD", "connects" : [ "JFK" ] },
{ "_id" : 3, "airport" : "PWM", "connects" : [ "BOS", "LHR" ] },
{ "_id" : 4, "airport" : "LHR", "connects" : [ "PWM" ] }
] )Atravelerscollection with the following documents:travelers集合包括以下文件:db.travelers.insertMany( [
{ "_id" : 1, "name" : "Dev", "nearestAirport" : "JFK" },
{ "_id" : 2, "name" : "Eliot", "nearestAirport" : "JFK" },
{ "_id" : 3, "name" : "Jeff", "nearestAirport" : "BOS" }
] )
For each document in the 对于travelers collection, the following aggregation operation looks up the nearestAirport value in the airports collection and recursively matches the connects field to the airport field. travelers集合中的每个文档,以下聚合操作在airports集合中查找nearestAirport值,并递归地将connects字段与airport字段匹配。The operation specifies a maximum recursion depth of 该操作指定最大递归深度为2.2。
db.travelers.aggregate( [
{
$graphLookup: {
from: "airports",
startWith: "$nearestAirport",
connectFromField: "connects",
connectToField: "airport",
maxDepth: 2,
depthField: "numConnections",
as: "destinations"
}
}
] )
The operation returns the following results:该操作返回以下结果:
{
"_id" : 1,
"name" : "Dev",
"nearestAirport" : "JFK",
"destinations" : [
{ "_id" : 3,
"airport" : "PWM",
"connects" : [ "BOS", "LHR" ],
"numConnections" : NumberLong(2) },
{ "_id" : 2,
"airport" : "ORD",
"connects" : [ "JFK" ],
"numConnections" : NumberLong(1) },
{ "_id" : 1,
"airport" : "BOS",
"connects" : [ "JFK", "PWM" ],
"numConnections" : NumberLong(1) },
{ "_id" : 0,
"airport" : "JFK",
"connects" : [ "BOS", "ORD" ],
"numConnections" : NumberLong(0) }
]
}
{
"_id" : 2,
"name" : "Eliot",
"nearestAirport" : "JFK",
"destinations" : [
{ "_id" : 3,
"airport" : "PWM",
"connects" : [ "BOS", "LHR" ],
"numConnections" : NumberLong(2) },
{ "_id" : 2,
"airport" : "ORD",
"connects" : [ "JFK" ],
"numConnections" : NumberLong(1) },
{ "_id" : 1,
"airport" : "BOS",
"connects" : [ "JFK", "PWM" ],
"numConnections" : NumberLong(1) },
{ "_id" : 0,
"airport" : "JFK",
"connects" : [ "BOS", "ORD" ],
"numConnections" : NumberLong(0) } ]
}
{
"_id" : 3,
"name" : "Jeff",
"nearestAirport" : "BOS",
"destinations" : [
{ "_id" : 2,
"airport" : "ORD",
"connects" : [ "JFK" ],
"numConnections" : NumberLong(2) },
{ "_id" : 3,
"airport" : "PWM",
"connects" : [ "BOS", "LHR" ],
"numConnections" : NumberLong(1) },
{ "_id" : 4,
"airport" : "LHR",
"connects" : [ "PWM" ],
"numConnections" : NumberLong(2) },
{ "_id" : 0,
"airport" : "JFK",
"connects" : [ "BOS", "ORD" ],
"numConnections" : NumberLong(1) },
{ "_id" : 1,
"airport" : "BOS",
"connects" : [ "JFK", "PWM" ],
"numConnections" : NumberLong(0) }
]
}
The following table provides a traversal path for the recursive search, up to depth 下表提供了递归搜索的遍历路径,直到深度2, where the starting airport is JFK:2,其中起始airport是JFK:
| Start value | nearestAirport value from the travelers collection: travelers集合中nearestAirport的值:{ ... "nearestAirport" : "JFK" }
|
|---|---|
| Depth 0 |
{ "_id" : 0, "airport" : "JFK", "connects" : [ "BOS", "ORD" ] }
|
| Depth 1 |
{ "_id" : 1, "airport" : "BOS", "connects" : [ "JFK", "PWM" ] }
|
| Depth 2 |
{ "_id" : 3, "airport" : "PWM", "connects" : [ "BOS", "LHR" ] }
|
With a Query Filter使用查询筛选器
The following example uses a collection with a set of documents containing names of people along with arrays of their friends and their hobbies. 下面的示例使用一个集合,其中包含一组文档,其中包含人名以及他们的朋友和爱好的数组。An aggregation operation finds one particular person and traverses her network of connections to find people who list 聚合操作找到一个特定的人,并遍历她的关系网络,找到将golf among their hobbies.golf列为自己爱好的人。
A collection named 名为people contains the following documents:people的集合包含以下文档:
{
"_id" : 1,
"name" : "Tanya Jordan",
"friends" : [ "Shirley Soto", "Terry Hawkins", "Carole Hale" ],
"hobbies" : [ "tennis", "unicycling", "golf" ]
}
{
"_id" : 2,
"name" : "Carole Hale",
"friends" : [ "Joseph Dennis", "Tanya Jordan", "Terry Hawkins" ],
"hobbies" : [ "archery", "golf", "woodworking" ]
}
{
"_id" : 3,
"name" : "Terry Hawkins",
"friends" : [ "Tanya Jordan", "Carole Hale", "Angelo Ward" ],
"hobbies" : [ "knitting", "frisbee" ]
}
{
"_id" : 4,
"name" : "Joseph Dennis",
"friends" : [ "Angelo Ward", "Carole Hale" ],
"hobbies" : [ "tennis", "golf", "topiary" ]
}
{
"_id" : 5,
"name" : "Angelo Ward",
"friends" : [ "Terry Hawkins", "Shirley Soto", "Joseph Dennis" ],
"hobbies" : [ "travel", "ceramics", "golf" ]
}
{
"_id" : 6,
"name" : "Shirley Soto",
"friends" : [ "Angelo Ward", "Tanya Jordan", "Carole Hale" ],
"hobbies" : [ "frisbee", "set theory" ]
}
The following aggregation operation uses three stages:以下聚合操作使用三个阶段:
$matchmatches on documents with anamefield containing the string"Tanya Jordan".$match在具有包含字符串"Tanya Jordan"的name字段的文档中匹配。Returns one output document.返回一个输出文档。$graphLookupconnects the output document'sfriendsfield with thenamefield of other documents in the collection to traverseTanya Jordan'snetwork of connections.$graphLookup将输出文档的friends字段与集合中其他文档的name字段连接起来,以遍历Tanya Jordan的连接网络。This stage uses the此阶段使用restrictSearchWithMatchparameter to find only documents in which thehobbiesarray containsgolf.restrictSearchWithMatch参数仅查找hobbies数组中包含golf的文档。Returns one output document.返回一个输出文档。$projectshapes the output document.对输出文档进行塑形。The names listed in在connections who play golfare taken from thenamefield of the documents listed in the input document'sgolfersarray.connections who play golf中列出的名称取自输入文档的golfers数组中列出的文档的name字段。
db.people.aggregate( [
{ $match: { "name": "Tanya Jordan" } },
{ $graphLookup: {
from: "people",
startWith: "$friends",
connectFromField: "friends",
connectToField: "name",
as: "golfers",
restrictSearchWithMatch: { "hobbies" : "golf" }
}
},
{ $project: {
"name": 1,
"friends": 1,
"connections who play golf": "$golfers.name"
}
}
] )
The operation returns the following document:该操作返回以下文档:
{
"_id" : 1,
"name" : "Tanya Jordan",
"friends" : [
"Shirley Soto",
"Terry Hawkins",
"Carole Hale"
],
"connections who play golf" : [
"Joseph Dennis",
"Tanya Jordan",
"Angelo Ward",
"Carole Hale"
]
}
Additional Resource额外的资源
Webinar: Working with Graph Data in MongoDB网络研讨会:在MongoDB中使用图形数据