$unwind (aggregation)
On this page本页内容
Definition定义
Syntax语法
You can pass a field path operand or a document operand to unwind an array field.可以传递字段路径操作数或文档操作数来展开数组字段。
Field Path Operand字段路径操作数
You can pass the array field path to 您可以将数组字段路径传递到$unwind. $unwind。When using this syntax, 使用此语法时,如果字段值为$unwind does not output a document if the field value is null, missing, or an empty array.null、缺少或为空数组,$unwind不会输出文档。
{ $unwind: <field path> }
When you specify the field path, prefix the field name with a dollar sign 指定字段路径时,请在字段名称前面加上美元符号$ and enclose in quotes.$并用引号括起来。
Document Operand with Options带选项的文档操作数
You can pass a document to 您可以将文档传递给$unwind to specify various behavior options.$unwind以指定各种行为选项。
{
$unwind:
{
path: <field path>,
includeArrayIndex: <string>,
preserveNullAndEmptyArrays: <boolean>
}
}
path | string | $ and enclose in quotes. $并用引号括起来。 |
includeArrayIndex | string | $. $开头。 |
preserveNullAndEmptyArrays | boolean |
false. false。 |
Behaviors行为
Non-Array Field Path非数组字段路径
When the operand does not resolve to an array, but is not missing,当操作数未解析为数组,但不缺少、为null, or an empty array,$unwindtreats the operand as a single element array.null或为空数组时,$unwind将操作数视为单个元素数组。When the operand is当操作数为null, missing, or an empty array$unwindfollows the behavior set for the preserveNullAndEmptyArrays option.null、缺少或为空数组时,$unwind将遵循为preserveNullAndEmptyArrays选项设置的行为。
Missing Field缺少字段
If you specify a path for a field that does not exist in an input document or the field is an empty array, 如果为输入文档中不存在的字段指定了路径,或者该字段是空数组,则默认情况下$unwind, by default, ignores the input document and will not output documents for that input document.$unwind将忽略输入文档,并且不会输出该输入文档的文档。
To output documents where the array field is missing, null or an empty array, use the preserveNullAndEmptyArrays option.若要输出缺少数组字段、null或空数组的文档,请使用preserveNullAndEmptyArrays选项。
Examples实例
Unwind Array展开数组
In 在mongosh, create a sample collection named inventory with the following document:mongosh中,使用以下文档创建一个名为inventory的样本集合:
db.inventory.insertOne({ "_id" : 1, "item" : "ABC1", sizes: [ "S", "M", "L"] })
The following aggregation uses the 以下聚合使用$unwind stage to output a document for each element in the sizes array:$unwind阶段为sizes数组中的每个元素输出一个文档:
db.inventory.aggregate( [ { $unwind : "$sizes" } ] )
The operation returns the following results:该操作返回以下结果:
{ "_id" : 1, "item" : "ABC1", "sizes" : "S" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "M" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "L" }
Each document is identical to the input document except for the value of the 除了sizes field which now holds a value from the original sizes array.sizes字段的值之外,每个文档都与输入文档相同,该字段现在保存原始sizes数组中的值。
Missing or Non-array Values缺少值或非数组值
Consider the 考虑一下clothing collection:clothing集合:
db.clothing.insertMany([
{ "_id" : 1, "item" : "Shirt", "sizes": [ "S", "M", "L"] },
{ "_id" : 2, "item" : "Shorts", "sizes" : [ ] },
{ "_id" : 3, "item" : "Hat", "sizes": "M" },
{ "_id" : 4, "item" : "Gloves" },
{ "_id" : 5, "item" : "Scarf", "sizes" : null }
])
如果存在以下情况,$unwind treats the sizes field as a single element array if:$unwind将size字段视为单个元素数组:
the field is present,存在场,the value is not null, and该值不为null,并且the value is not an empty array.该值不是空数组。
Expand the 使用sizes arrays with $unwind:$unwind扩展sizes数组:
db.clothing.aggregate( [ { $unwind: { path: "$sizes" } } ] )
The $unwind operation returns:
{ _id: 1, item: 'Shirt', sizes: 'S' },
{ _id: 1, item: 'Shirt', sizes: 'M' },
{ _id: 1, item: 'Shirt', sizes: 'L' },
{ _id: 3, item: 'Hat', sizes: 'M' }
In document在文档"_id": 1,sizesis a populated array.$unwindreturns a document for each element in thesizesfield."_id": 1中,sizes是一个填充的数组。$unwind为sizes字段中的每个元素返回一个文档。In document在文档"_id": 3,sizesresolves to a single element array."_id": 3中,size解析为单个元素数组。Documents文档"_id": 2, "_id": 4, and"_id": 5do not return anything because thesizesfield cannot be reduced to a single element array."_id": 2, "_id": 4和"_id": 5不返回任何内容,因为sizes字段不能缩减为单个元素数组。
preserveNullAndEmptyArrays and 和includeArrayIndex
The preserveNullAndEmptyArrays and includeArrayIndex examples use the following collection:preserveNullAndEmptyArrays和includeArrayIndex示例使用以下集合:
db.inventory2.insertMany([
{ "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] },
{ "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] },
{ "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" },
{ "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") },
{ "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null }
])
preserveNullAndEmptyArrays
The following $unwind operation uses the preserveNullAndEmptyArrays option to include documents whose sizes field is null, missing, or an empty array.
db.inventory2.aggregate( [
{ $unwind: { path: "$sizes", preserveNullAndEmptyArrays: true } }
] )
The output includes those documents where the 输出包括sizes field is null, missing, or an empty array:sizes字段为null、缺失或为空数组的文档:
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }
{ "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") }
{ "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null }
includeArrayIndex
The following 以下$unwind operation uses the includeArrayIndex option to include the array index in the output.$unwind操作使用includeArrayIndex选项将数组索引包括在输出中。
db.inventory2.aggregate( [
{
$unwind:
{
path: "$sizes",
includeArrayIndex: "arrayIndex"
}
}])
The operation unwinds the 该操作将展开sizes array and includes the array index in the new arrayIndex field. sizes数组,并将数组索引包含在新的arrayIndex字段中。If the sizes field does not resolve to a populated array but is not missing, null, or an empty array, the arrayIndex field is null.
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S", "arrayIndex" : NumberLong(0) }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M", "arrayIndex" : NumberLong(1) }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L", "arrayIndex" : NumberLong(2) }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M", "arrayIndex" : null }
Group by Unwound Values按展开值分组
In 在mongosh, create a sample collection named inventory2 with the following documents:mongosh中,使用以下文档创建一个名为inventory2的示例集合:
db.inventory2.insertMany([
{ "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] },
{ "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] },
{ "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" },
{ "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") },
{ "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null }
])
The following pipeline unwinds the sizes array and groups the resulting documents by the unwound size values:
db.inventory2.aggregate( [
// First Stage
{
$unwind: { path: "$sizes", preserveNullAndEmptyArrays: true }
},
// Second Stage
{
$group:
{
_id: "$sizes",
averagePrice: { $avg: "$price" }
}
},
// Third Stage
{
$sort: { "averagePrice": -1 }
}
] )
First Stage:第一阶段:-
The
$unwindstage outputs a new document for each element in thesizesarray. The stage uses the preserveNullAndEmptyArrays option to include in the output those documents wheresizesfield is missing, null or an empty array. This stage passes the following documents to the next stage:{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }
{ "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") }
{ "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null } Second Stage:第二阶段:-
The
$groupstage groups the documents bysizesand calculates the average price of each size. This stage passes the following documents to the next stage:{ "_id" : "S", "averagePrice" : NumberDecimal("80") }
{ "_id" : "L", "averagePrice" : NumberDecimal("80") }
{ "_id" : "M", "averagePrice" : NumberDecimal("120") }
{ "_id" : null, "averagePrice" : NumberDecimal("45.25") } Third Stage:第三阶段:-
The
$sortstage sorts the documents byaveragePricein descending order. The operation returns the following result:{ "_id" : "M", "averagePrice" : NumberDecimal("120") }
{ "_id" : "L", "averagePrice" : NumberDecimal("80") }
{ "_id" : "S", "averagePrice" : NumberDecimal("80") }
{ "_id" : null, "averagePrice" : NumberDecimal("45.25") }
Unwind Embedded Arrays展开嵌入式数组
In 在mongosh, create a sample collection named sales with the following documents:mongosh中,使用以下文档创建一个名为sales的示例集合:
db.sales.insertMany([
{
_id: "1",
"items" : [
{
"name" : "pens",
"tags" : [ "writing", "office", "school", "stationary" ],
"price" : NumberDecimal("12.00"),
"quantity" : NumberInt("5")
},
{
"name" : "envelopes",
"tags" : [ "stationary", "office" ],
"price" : NumberDecimal("19.95"),
"quantity" : NumberInt("8")
}
]
},
{
_id: "2",
"items" : [
{
"name" : "laptop",
"tags" : [ "office", "electronics" ],
"price" : NumberDecimal("800.00"),
"quantity" : NumberInt("1")
},
{
"name" : "notepad",
"tags" : [ "stationary", "school" ],
"price" : NumberDecimal("14.95"),
"quantity" : NumberInt("3")
}
]
}
])
The following operation groups the items sold by their tags and calculates the total sales amount per each tag.以下操作按标签对销售的商品进行分组,并计算每个标签的总销售额。
db.sales.aggregate([
// First Stage
{ $unwind: "$items" },
// Second Stage
{ $unwind: "$items.tags" },
// Third Stage
{
$group:
{
_id: "$items.tags",
totalSalesAmount:
{
$sum: { $multiply: [ "$items.price", "$items.quantity" ] }
}
}
}
])
First Stage第一阶段-
The first第一个$unwindstage outputs a new document for each element in theitemsarray:$unwind阶段为items数组中的每个元素输出一个新文档:{ "_id" : "1", "items" : { "name" : "pens", "tags" : [ "writing", "office", "school", "stationary" ], "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : [ "stationary", "office" ], "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : [ "office", "electronics" ], "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : [ "stationary", "school" ], "price" : NumberDecimal("14.95"), "quantity" : 3 } } Second Stage第二阶段-
The second第二个$unwindstage outputs a new document for each element in theitems.tagsarrays:$unwind阶段为items.tags数组中的每个元素输出一个新文档:{ "_id" : "1", "items" : { "name" : "pens", "tags" : "writing", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "office", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "school", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "stationary", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : "stationary", "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : "office", "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : "office", "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : "electronics", "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : "stationary", "price" : NumberDecimal("14.95"), "quantity" : 3 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : "school", "price" : NumberDecimal("14.95"), "quantity" : 3 } } Third Stage第三阶段-
The$groupstage groups the documents by the tag and calculates the total sales amount of items with each tag:$group阶段按标记对文档进行分组,并计算每个标记的项目的总销售额:{ "_id" : "writing", "totalSalesAmount" : NumberDecimal("60.00") }
{ "_id" : "stationary", "totalSalesAmount" : NumberDecimal("264.45") }
{ "_id" : "electronics", "totalSalesAmount" : NumberDecimal("800.00") }
{ "_id" : "school", "totalSalesAmount" : NumberDecimal("104.85") }
{ "_id" : "office", "totalSalesAmount" : NumberDecimal("1019.60") }