Docs HomeMongoDB Manual

$unwind (aggregation)

Definition定义

$unwind

Deconstructs an array field from the input documents to output a document for each element. 从输入文档中解构数组字段,为每个元素输出一个文档。Each output document is the input document with the value of the array field replaced by the element.每个输出文档都是输入文档,数组字段的值被元素替换。

Syntax语法

You can pass a field path operand or a document operand to unwind an array field.可以传递字段路径操作数或文档操作数来展开数组字段。

Field Path Operand字段路径操作数

You can pass the array field path to $unwind. 您可以将数组字段路径传递到$unwindWhen using this syntax, $unwind does not output a document if the field value is null, missing, or an empty array.使用此语法时,如果字段值为null、缺少或为空数组,$unwind不会输出文档。

{ $unwind: <field path> }

When you specify the field path, prefix the field name with a dollar sign $ and enclose in quotes.指定字段路径时,请在字段名称前面加上美元符号$并用引号括起来。

Document Operand with Options带选项的文档操作数

You can pass a document to $unwind to specify various behavior options.您可以将文档传递给$unwind以指定各种行为选项。

{
$unwind:
{
path: <field path>,
includeArrayIndex: <string>,
preserveNullAndEmptyArrays: <boolean>
}
}
Field字段Type类型Description描述
pathstringField path to an array field. 数组字段的字段路径。To specify a field path, prefix the field name with a dollar sign $ and enclose in quotes. 若要指定字段路径,请在字段名称前面加上美元符号$并用引号括起来。
includeArrayIndexstringOptional.可选的。The name of a new field to hold the array index of the element. The name cannot start with a dollar sign $. 用于保存元素的数组索引的新字段的名称。名称不能以美元符号$开头。
preserveNullAndEmptyArraysbooleanOptional.可选的。
  • If true, if the path is null, missing, or an empty array, $unwind outputs the document.如果为true,如果路径为null、缺少或为空数组,$unwind将输出文档。
  • If false, if path is null, missing, or an empty array, $unwind does not output a document.如果为false,如果路径为null、缺失或为空数组,$unwind不会输出文档。
The default value is false. 默认值为false

Behaviors行为

Non-Array Field Path非数组字段路径

  • When the operand does not resolve to an array, but is not missing, null, or an empty array, $unwind treats the operand as a single element array.当操作数未解析为数组,但不缺少、为null或为空数组时,$unwind将操作数视为单个元素数组。
  • When the operand is null, missing, or an empty array $unwind follows the behavior set for the preserveNullAndEmptyArrays option.当操作数为null、缺少或为空数组时,$unwind将遵循为preserveNullAndEmptyArrays选项设置的行为。

Missing Field缺少字段

If you specify a path for a field that does not exist in an input document or the field is an empty array, $unwind, by default, ignores the input document and will not output documents for that input document.如果为输入文档中不存在的字段指定了路径,或者该字段是空数组,则默认情况下$unwind将忽略输入文档,并且不会输出该输入文档的文档。

To output documents where the array field is missing, null or an empty array, use the preserveNullAndEmptyArrays option.若要输出缺少数组字段、null或空数组的文档,请使用preserveNullAndEmptyArrays选项。

Examples实例

Unwind Array展开数组

In mongosh, create a sample collection named inventory with the following document:mongosh中,使用以下文档创建一个名为inventory的样本集合:

db.inventory.insertOne({ "_id" : 1, "item" : "ABC1", sizes: [ "S", "M", "L"] })

The following aggregation uses the $unwind stage to output a document for each element in the sizes array:以下聚合使用$unwind阶段为sizes数组中的每个元素输出一个文档:

db.inventory.aggregate( [ { $unwind : "$sizes" } ] )

The operation returns the following results:该操作返回以下结果:

{ "_id" : 1, "item" : "ABC1", "sizes" : "S" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "M" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "L" }

Each document is identical to the input document except for the value of the sizes field which now holds a value from the original sizes array.除了sizes字段的值之外,每个文档都与输入文档相同,该字段现在保存原始sizes数组中的值。

Missing or Non-array Values缺少值或非数组值

Consider the clothing collection:考虑一下clothing集合:

db.clothing.insertMany([
{ "_id" : 1, "item" : "Shirt", "sizes": [ "S", "M", "L"] },
{ "_id" : 2, "item" : "Shorts", "sizes" : [ ] },
{ "_id" : 3, "item" : "Hat", "sizes": "M" },
{ "_id" : 4, "item" : "Gloves" },
{ "_id" : 5, "item" : "Scarf", "sizes" : null }
])

$unwind treats the sizes field as a single element array if:如果存在以下情况,$unwindsize字段视为单个元素数组:

  • the field is present,存在场,
  • the value is not null, and该值不为null,并且
  • the value is not an empty array.该值不是空数组。

Expand the sizes arrays with $unwind:使用$unwind扩展sizes数组:

db.clothing.aggregate( [ { $unwind: { path: "$sizes" } } ] )

The $unwind operation returns:

{ _id: 1, item: 'Shirt', sizes: 'S' },
{ _id: 1, item: 'Shirt', sizes: 'M' },
{ _id: 1, item: 'Shirt', sizes: 'L' },
{ _id: 3, item: 'Hat', sizes: 'M' }
  • In document "_id": 1, sizes is a populated array. $unwind returns a document for each element in the sizes field.在文档"_id": 1中,sizes是一个填充的数组。$unwindsizes字段中的每个元素返回一个文档。
  • In document "_id": 3, sizes resolves to a single element array.在文档"_id": 3中,size解析为单个元素数组。
  • Documents "_id": 2, "_id": 4, and "_id": 5 do not return anything because the sizes field cannot be reduced to a single element array.文档"_id": 2, "_id": 4"_id": 5不返回任何内容,因为sizes字段不能缩减为单个元素数组。
Note

The { path: <FIELD> } syntax is optional. { path: <FIELD> }语法是可选的。The following $unwind operations are equivalent.以下$unwind操作是等效的。

db.clothing.aggregate( [ { $unwind: "$sizes" } ] )
db.clothing.aggregate( [ { $unwind: { path: "$sizes" } } ] )

preserveNullAndEmptyArrays and includeArrayIndex

The preserveNullAndEmptyArrays and includeArrayIndex examples use the following collection:preserveNullAndEmptyArraysincludeArrayIndex示例使用以下集合:

db.inventory2.insertMany([
{ "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] },
{ "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] },
{ "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" },
{ "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") },
{ "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null }
])

preserveNullAndEmptyArrays

The following $unwind operation uses the preserveNullAndEmptyArrays option to include documents whose sizes field is null, missing, or an empty array.

db.inventory2.aggregate( [
{ $unwind: { path: "$sizes", preserveNullAndEmptyArrays: true } }
] )

The output includes those documents where the sizes field is null, missing, or an empty array:输出包括sizes字段为null、缺失或为空数组的文档:

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }
{ "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") }
{ "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null }

includeArrayIndex

The following $unwind operation uses the includeArrayIndex option to include the array index in the output.以下$unwind操作使用includeArrayIndex选项将数组索引包括在输出中。

db.inventory2.aggregate( [
{
$unwind:
{
path: "$sizes",
includeArrayIndex: "arrayIndex"
}
}])

The operation unwinds the sizes array and includes the array index in the new arrayIndex field. 该操作将展开sizes数组,并将数组索引包含在新的arrayIndex字段中。If the sizes field does not resolve to a populated array but is not missing, null, or an empty array, the arrayIndex field is null.

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S", "arrayIndex" : NumberLong(0) }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M", "arrayIndex" : NumberLong(1) }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L", "arrayIndex" : NumberLong(2) }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M", "arrayIndex" : null }

Group by Unwound Values按展开值分组

In mongosh, create a sample collection named inventory2 with the following documents:mongosh中,使用以下文档创建一个名为inventory2的示例集合:

db.inventory2.insertMany([
{ "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] },
{ "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] },
{ "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" },
{ "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") },
{ "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null }
])

The following pipeline unwinds the sizes array and groups the resulting documents by the unwound size values:

db.inventory2.aggregate( [
// First Stage
{
$unwind: { path: "$sizes", preserveNullAndEmptyArrays: true }
},
// Second Stage
{
$group:
{
_id: "$sizes",
averagePrice: { $avg: "$price" }
}
},
// Third Stage
{
$sort: { "averagePrice": -1 }
}
] )
First Stage:第一阶段:

The $unwind stage outputs a new document for each element in the sizes array. The stage uses the preserveNullAndEmptyArrays option to include in the output those documents where sizes field is missing, null or an empty array. This stage passes the following documents to the next stage:

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }
{ "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") }
{ "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null }
Second Stage:第二阶段:

The $group stage groups the documents by sizes and calculates the average price of each size. This stage passes the following documents to the next stage:

{ "_id" : "S", "averagePrice" : NumberDecimal("80") }
{ "_id" : "L", "averagePrice" : NumberDecimal("80") }
{ "_id" : "M", "averagePrice" : NumberDecimal("120") }
{ "_id" : null, "averagePrice" : NumberDecimal("45.25") }
Third Stage:第三阶段:

The $sort stage sorts the documents by averagePrice in descending order. The operation returns the following result:

{ "_id" : "M", "averagePrice" : NumberDecimal("120") }
{ "_id" : "L", "averagePrice" : NumberDecimal("80") }
{ "_id" : "S", "averagePrice" : NumberDecimal("80") }
{ "_id" : null, "averagePrice" : NumberDecimal("45.25") }
Tip

See also: 另请参阅:

Unwind Embedded Arrays展开嵌入式数组

In mongosh, create a sample collection named sales with the following documents:mongosh中,使用以下文档创建一个名为sales的示例集合:

db.sales.insertMany([
{
_id: "1",
"items" : [
{
"name" : "pens",
"tags" : [ "writing", "office", "school", "stationary" ],
"price" : NumberDecimal("12.00"),
"quantity" : NumberInt("5")
},
{
"name" : "envelopes",
"tags" : [ "stationary", "office" ],
"price" : NumberDecimal("19.95"),
"quantity" : NumberInt("8")
}
]
},
{
_id: "2",
"items" : [
{
"name" : "laptop",
"tags" : [ "office", "electronics" ],
"price" : NumberDecimal("800.00"),
"quantity" : NumberInt("1")
},
{
"name" : "notepad",
"tags" : [ "stationary", "school" ],
"price" : NumberDecimal("14.95"),
"quantity" : NumberInt("3")
}
]
}
])

The following operation groups the items sold by their tags and calculates the total sales amount per each tag.以下操作按标签对销售的商品进行分组,并计算每个标签的总销售额。

db.sales.aggregate([
// First Stage
{ $unwind: "$items" },

// Second Stage
{ $unwind: "$items.tags" },

// Third Stage
{
$group:
{
_id: "$items.tags",
totalSalesAmount:
{
$sum: { $multiply: [ "$items.price", "$items.quantity" ] }
}
}
}
])
First Stage第一阶段

The first $unwind stage outputs a new document for each element in the items array:第一个$unwind阶段为items数组中的每个元素输出一个新文档:

{ "_id" : "1", "items" : { "name" : "pens", "tags" : [ "writing", "office", "school", "stationary" ], "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : [ "stationary", "office" ], "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : [ "office", "electronics" ], "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : [ "stationary", "school" ], "price" : NumberDecimal("14.95"), "quantity" : 3 } }
Second Stage第二阶段

The second $unwind stage outputs a new document for each element in the items.tags arrays:第二个$unwind阶段为items.tags数组中的每个元素输出一个新文档:

{ "_id" : "1", "items" : { "name" : "pens", "tags" : "writing", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "office", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "school", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "stationary", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : "stationary", "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : "office", "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : "office", "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : "electronics", "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : "stationary", "price" : NumberDecimal("14.95"), "quantity" : 3 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : "school", "price" : NumberDecimal("14.95"), "quantity" : 3 } }
Third Stage第三阶段

The $group stage groups the documents by the tag and calculates the total sales amount of items with each tag:$group阶段按标记对文档进行分组,并计算每个标记的项目的总销售额:

{ "_id" : "writing", "totalSalesAmount" : NumberDecimal("60.00") }
{ "_id" : "stationary", "totalSalesAmount" : NumberDecimal("264.45") }
{ "_id" : "electronics", "totalSalesAmount" : NumberDecimal("800.00") }
{ "_id" : "school", "totalSalesAmount" : NumberDecimal("104.85") }
{ "_id" : "office", "totalSalesAmount" : NumberDecimal("1019.60") }
Tip

See also: 另请参阅:

Additional Resources额外的资源