Definition
New in version 5.0.
$expMovingAvg
Returns the exponential moving average of numeric expressions applied to documents in a partition defined in the $setWindowFields
stage.
$expMovingAvg
is only available in the $setWindowFields
stage.
$expMovingAvg
syntax:
{
$expMovingAvg: {
input: <input expression>,
N: <integer>,
alpha: <float>
}
}
$expMovingAvg
takes a document with these fields:
Field | Description |
---|---|
Specifies the expression to evaluate. Non-numeric expressions are ignored. | |
An You must specify either N or alpha. You cannot specify both. The
| |
A You must specify either N or alpha. You cannot specify both. The
|
Behavior
You must specify either N or alpha. You cannot specify both.
$expMovingAvg
ignores non-numeric values, null
values, and missing fields.
Examples
Create a stockPrices
collection that contains prices for stocks named "MDB"
and "MSFT"
:
db.stockPrices.insertMany( [
{ stock: "MDB", date: new Date( "2020-05-18T20:00:00Z" ), price: 13 },
{ stock: "MDB", date: new Date( "2020-05-19T20:00:00Z" ), price: 15.4 },
{ stock: "MDB", date: new Date( "2020-05-20T20:00:00Z" ), price: 12 },
{ stock: "MDB", date: new Date( "2020-05-21T20:00:00Z" ), price: 11.7 },
{ stock: "MSFT", date: new Date( "2020-05-18T20:00:00Z" ), price: 82 },
{ stock: "MSFT", date: new Date( "2020-05-19T20:00:00Z" ), price: 94 },
{ stock: "MSFT", date: new Date( "2020-05-20T20:00:00Z" ), price: 112 },
{ stock: "MSFT", date: new Date( "2020-05-21T20:00:00Z" ), price: 97.3 }
] )
Exponential Moving Average Using N
This example uses $expMovingAvg
in the $setWindowFields
stage to output the exponential moving average for the stock prices weighted for two historical documents (two days for the example documents) using N set to 2
:
db.stockPrices.aggregate( [
{
$setWindowFields: {
partitionBy: "$stock",
sortBy: { date: 1 },
output: {
expMovingAvgForStock: {
$expMovingAvg: { input: "$price", N: 2 }
}
}
}
}
] )
In the example:
partitionBy: "$stock"
partitions the documents in the collection bystock
. There are partitions for"MDB"
and"MSFT"
.sortBy: { date: 1 }
sorts the documents in each partition bydate
in ascending order (1
), so the earliestdate
is first.output
returns the exponential moving average for the stockprice
field with N set to2
:- In the input documents, there is one document for each day and the documents are ordered by
date
. Therefore, with N is set to2
, theprice
in the current document and theprice
in the previous document, if available, are allocated the highest weight in the exponential moving average formula. - The exponential moving average for the
price
field is stored in a new field calledexpMovingAvgForStocks
, as shown in the following results.
- In the input documents, there is one document for each day and the documents are ordered by
{ "_id" : ObjectId("60d11fef833dfeadc8e6286b"), "stock" : "MDB",
"date" : ISODate("2020-05-18T20:00:00Z"), "price" : 13,
"expMovingAvgForStock" : 13 }
{ "_id" : ObjectId("60d11fef833dfeadc8e6286c"), "stock" : "MDB",
"date" : ISODate("2020-05-19T20:00:00Z"), "price" : 15.4,
"expMovingAvgForStock" : 14.6 }
{ "_id" : ObjectId("60d11fef833dfeadc8e6286d"), "stock" : "MDB",
"date" : ISODate("2020-05-20T20:00:00Z"), "price" : 12,
"expMovingAvgForStock" : 12.866666666666667 }
{ "_id" : ObjectId("60d11fef833dfeadc8e6286e"), "stock" : "MDB",
"date" : ISODate("2020-05-21T20:00:00Z"), "price" : 11.7,
"expMovingAvgForStock" : 12.088888888888889 }
{ "_id" : ObjectId("60d11fef833dfeadc8e6286f"), "stock" : "MSFT",
"date" : ISODate("2020-05-18T20:00:00Z"), "price" : 82,
"expMovingAvgForStock" : 82 }
{ "_id" : ObjectId("60d11fef833dfeadc8e62870"), "stock" : "MSFT",
"date" : ISODate("2020-05-19T20:00:00Z"), "price" : 94,
"expMovingAvgForStock" : 90 }
{ "_id" : ObjectId("60d11fef833dfeadc8e62871"), "stock" : "MSFT",
"date" : ISODate("2020-05-20T20:00:00Z"), "price" : 112,
"expMovingAvgForStock" : 104.66666666666667 }
{ "_id" : ObjectId("60d11fef833dfeadc8e62872"), "stock" : "MSFT",
"date" : ISODate("2020-05-21T20:00:00Z"), "price" : 97.3,
"expMovingAvgForStock" : 99.75555555555556 }
Exponential Moving Average Using alpha
This example uses $expMovingAvg
in the $setWindowFields
stage to output the exponential moving average for the stock prices using alpha set to 0.75
:
db.stockPrices.aggregate( [
{
$setWindowFields: {
partitionBy: "$stock",
sortBy: { date: 1 },
output: {
expMovingAvgForStock: {
$expMovingAvg: { input: "$price", alpha: 0.75 }
}
}
}
}
] )
In the example:
partitionBy: "$stock"
partitions the documents in the collection bystock
. There are partitions for"MDB"
and"MSFT"
.sortBy: { date: 1 }
sorts the documents in each partition bydate
in ascending order (1
), so the earliestdate
is first.output
sets the exponential moving average for the stock prices in a new field calledexpMovingAvgForStock
, as shown in the following results. The value for alpha is set to0.75
in the exponential moving average formula.
{ "_id" : ObjectId("60d11fef833dfeadc8e6286b"), "stock" : "MDB",
"date" : ISODate("2020-05-18T20:00:00Z"), "price" : 13,
"expMovingAvgForStock" : 13 }
{ "_id" : ObjectId("60d11fef833dfeadc8e6286c"), "stock" : "MDB",
"date" : ISODate("2020-05-19T20:00:00Z"), "price" : 15.4,
"expMovingAvgForStock" : 14.8 }
{ "_id" : ObjectId("60d11fef833dfeadc8e6286d"), "stock" : "MDB",
"date" : ISODate("2020-05-20T20:00:00Z"), "price" : 12,
"expMovingAvgForStock" : 12.7 }
{ "_id" : ObjectId("60d11fef833dfeadc8e6286e"), "stock" : "MDB",
"date" : ISODate("2020-05-21T20:00:00Z"), "price" : 11.7,
"expMovingAvgForStock" : 11.95 }
{ "_id" : ObjectId("60d11fef833dfeadc8e6286f"), "stock" : "MSFT",
"date" : ISODate("2020-05-18T20:00:00Z"), "price" : 82,
"expMovingAvgForStock" : 82 }
{ "_id" : ObjectId("60d11fef833dfeadc8e62870"), "stock" : "MSFT",
"date" : ISODate("2020-05-19T20:00:00Z"), "price" : 94,
"expMovingAvgForStock" : 91 }
{ "_id" : ObjectId("60d11fef833dfeadc8e62871"), "stock" : "MSFT",
"date" : ISODate("2020-05-20T20:00:00Z"), "price" : 112,
"expMovingAvgForStock" : 106.75 }
{ "_id" : ObjectId("60d11fef833dfeadc8e62872"), "stock" : "MSFT",
"date" : ISODate("2020-05-21T20:00:00Z"), "price" : 97.3,
"expMovingAvgForStock" : 99.6625 }