Note
Aggregation Pipeline as Alternative to Map-Reduce聚合管道作为Map-Reduce的替代方案
Starting in MongoDB 5.0, map-reduce is deprecated:从MongoDB 5.0开始,map-reduce被弃用:
Instead of map-reduce, you should use an aggregation pipeline. Aggregation pipelines provide better performance and usability than map-reduce.您应该使用聚合管道而不是map-reduce。聚合管道提供了比map-reduce更好的性能和可用性。You can rewrite map-reduce operations using aggregation pipeline stages, such as您可以使用聚合管道阶段(如$group,$merge, and others.$group、$merge等)重写map-reduce操作。For map-reduce operations that require custom functionality, you can use the对于需要自定义功能的map-reduce操作,可以使用$accumulatorand$functionaggregation operators.$accumulator和$function聚合运算符。You can use those operators to define custom aggregation expressions in JavaScript.您可以使用这些运算符在JavaScript中定义自定义聚合表达式。
For examples of aggregation pipeline alternatives to map-reduce, see:有关map-reduce的聚合管道替代方案的示例,请参阅:
Definition定义
mapReduceThemapReducecommand allows you to run map-reduce aggregation operations over a collection.mapReduce命令允许您在集合上运行map-reduce聚合操作。Tip
In在mongosh, this command can also be run through themapReduce()helper method.mongosh中,此命令也可以通过mapReduce()辅助方法运行。Helper methods are convenient for助手方法对mongoshusers, but they may not return the same level of information as database commands. In cases where the convenience is not needed or the additional return fields are required, use the database command.mongosh用户来说很方便,但它们可能不会返回与数据库命令相同级别的信息。如果不需要便利性或需要额外的返回字段,请使用database命令。
Compatibility兼容性
This command is available in deployments hosted in the following environments:此命令在以下环境中托管的部署中可用:
- MongoDB Atlas
: The fully managed service for MongoDB deployments in the cloud:云中MongoDB部署的完全托管服务
Important
This command is not supported in M0 and Flex clusters. For more information, see Unsupported Commands.M0和Flex集群不支持此命令。有关详细信息,请参阅不支持的命令。
- MongoDB Enterprise
: The subscription-based, self-managed version of MongoDB:MongoDB的基于订阅的自我管理版本 - MongoDB Community
: The source-available, free-to-use, and self-managed version of MongoDB:MongoDB的源代码可用、免费使用和自我管理版本
Syntax语法
Note
MongoDB ignores the verbose option.MongoDB忽略了verbose选项。
Starting in version 4.2, MongoDB deprecates:从4.2版本开始,MongoDB弃用:
The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.map reduce选项用于创建新的分片集合,以及使用sharded选项进行map-reduce。要输出到分片集合,请先创建分片集合。MongoDB 4.2也不支持替换现有的分片集合。
The command has the following syntax:该命令具有以下语法:
db.runCommand(
{
mapReduce: <string>,
map: <string or JavaScript>,
reduce: <string or JavaScript>,
finalize: <string or JavaScript>,
out: <output>,
query: <document>,
sort: <document>,
limit: <number>,
scope: <document>,
jsMode: <boolean>,
verbose: <boolean>,
bypassDocumentValidation: <boolean>,
collation: <document>,
maxTimeMS: <integer>,
writeConcern: <document>,
comment: <any>
}
)Command Fields命令字段
The command takes the following fields as arguments:该命令接受以下字段作为参数:
mapReduce |
| |
map |
| |
reduce |
| |
out |
| |
query |
| |
sort |
| |
limit |
| |
finalize |
| |
scope |
| |
jsMode |
| |
verbose |
| |
bypassDocumentValidation |
| |
collation |
| |
maxTimeMS |
| |
writeConcern |
| |
comment |
|
Usage用法
The following is a prototype usage of the 以下是mapReduce command:mapReduce命令的原型用法:
var mapFunction = function() { ... };
var reduceFunction = function(key, values) { ... };
db.runCommand(
{
mapReduce: <input-collection>,
map: mapFunction,
reduce: reduceFunction,
out: { merge: <output-collection> },
query: <query>
}
)
Note
JavaScript in MongoDBMongoDB中的JavaScript
Although 虽然mapReduce uses JavaScript, most interactions with MongoDB do not use JavaScript but use an idiomatic driver in the language of the interacting application.mapReduce使用JavaScript,但与MongoDB的大多数交互都不使用JavaScript,而是使用交互应用程序语言中的惯用驱动程序。
Requirements for the map Functionmap函数的要求
map FunctionThe map function is responsible for transforming each input document into zero or more documents. It can access the variables defined in the scope parameter, and has the following prototype:map函数负责将每个输入文档转换为零个或多个文档。它可以访问作用域参数中定义的变量,并具有以下原型:
function() {
...
emit(key, value);
}
The map function has the following requirements:map函数有以下要求:
In the在mapfunction, reference the current document asthiswithin the function.map函数中,将当前文档引用为函数中的this。The无论出于何种原因,mapfunction should not access the database for any reason.map函数都不应访问数据库。Themapfunction should be pure, or have no impact outside of the function (i.e. side effects.)map函数应该是纯的,或者在函数之外没有影响(即副作用)Themapfunction may optionally callemit(key,value)any number of times to create an output document associatingkeywithvalue.map函数可以可选地调用emit(key,value)任意次数,以创建将key与value相关联的输出文档。
The following 根据输入文档map function will call emit(key,value) either 0 or 1 times depending on the value of the input document's status field:status字段的值,以下map函数将调用emit(key,value)0或1次:
function() {
if (this.status == 'A')
emit(this.cust_id, 1);
}
The following 根据输入文档的map function may call emit(key,value) multiple times depending on the number of elements in the input document's items field:items字段中的元素数量,以下map函数可能会多次调用emit(key,value):
function() {
this.items.forEach(function(item){ emit(item.sku, 1); });
}Requirements for the reduce Functionreduce函数的要求
reduce FunctionThe reduce function has the following prototype:reduce函数具有以下原型:
function(key, values) {
...
return result;
}
The reduce function exhibits the following behaviors:reduce函数表现出以下行为:
Thereducefunction should not access the database, even to perform read operations.reduce函数不应该访问数据库,即使是执行读取操作。Thereducefunction should not affect the outside system.reduce函数不应影响外部系统。MongoDB can invoke theMongoDB可以对同一个键多次调用reducefunction more than once for the same key.reduce函数。In this case, the previous output from the在这种情况下,该键的reducefunction for that key will become one of the input values to the nextreducefunction invocation for that key.reduce函数的前一个输出将成为该键的下一个reduce函数调用的输入值之一。Thereducefunction can access the variables defined in thescopeparameter.reduce函数可以访问scope参数中定义的变量。The inputs to要reducemust not be larger than half of MongoDB's maximum BSON document size.reduce的输入不得大于MongoDB最大BSON文档大小的一半。This requirement may be violated when large documents are returned and then joined together in subsequent当返回大型文档并在后续reducesteps.reduce步骤中将其连接在一起时,可能会违反此要求。
Because it is possible to invoke the 因为可以对同一个键多次调用reduce function more than once for the same key, the following properties need to be true:reduce函数,所以以下属性需要为真:
the type of the return object must be identical to the type of the返回对象的类型必须与valueemitted by themapfunction.map函数发出的value的类型相同。thereducefunction must be associative. The following statement must be true:reduce函数必须是关联的。以下语句必须为true:reduce(key, [ C, reduce(key, [ A, B ]) ] ) == reduce( key, [ C, A, B ] )thereducefunction must be idempotent. Ensure that the following statement is true:reduce函数必须是幂等的。确保以下语句为true:reduce( key, [ reduce(key, valuesArray) ] ) == reduce( key, valuesArray )thereducefunction should be commutative: that is, the order of the elements in thevaluesArrayshould not affect the output of thereducefunction, so that the following statement is true:reduce函数应该是可交换的:也就是说,valuesArray中元素的顺序不应该影响reduce函数的输出,因此以下语句为true:reduce( key, [ A, B ] ) == reduce( key, [ B, A ] )
Requirements for the finalize Functionfinalize函数的要求
finalize FunctionThe finalize function has the following prototype:finalize函数具有以下原型:
function(key, reducedValue) {
...
return modifiedObject;
}
The finalize function receives as its arguments a key value and the reducedValue from the reduce function. Be aware that:finalize函数从reduce函数接收key值和reducedValue作为其参数。请注意:
Thefinalizefunction should not access the database for any reason.finalize函数不应出于任何原因访问数据库。Thefinalizefunction should be pure, or have no impact outside of the function (i.e. side effects.)finalize函数应该是纯的,或者在函数之外没有影响(即副作用)Thefinalizefunction can access the variables defined in thescopeparameter.finalize函数可以访问scope(作用域)参数中定义的变量。
out Options选项
You can specify the following options for the 您可以为out parameter:out参数指定以下选项:
Output to a Collection输出到集合
This option outputs to a new collection, and is not available on secondary members of replica sets.此选项输出到新集合,在副本集的辅助成员上不可用。
out: <collectionName>Output to a Collection with an Action通过操作输出到集合
Note
Starting in version 4.2, MongoDB deprecates:从4.2版本开始,MongoDB弃用:
The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce.map-reduce选项用于创建新的分片集合,以及使用sharded选项进行map-reduce。To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.要输出到分片集合,请先创建分片集合。MongoDB 4.2也不支持替换现有的分片集合。
This option is only available when passing a collection that already exists to 此选项仅在将已存在的集合传递到out. It is not available on secondary members of replica sets.out时可用。它在副本集的辅助成员上不可用。
out: { <action>: <collectionName>
[, db: <dbName>]
[, sharded: <boolean> ] }
When you output to a collection with an action, the 当您通过操作输出到集合时,out has the following parameters:out具有以下参数:
<action>: Specify one of the following actions::指定以下操作之一:replaceReplace the contents of the如果存在具有<collectionName>if the collection with the<collectionName>exists.<collectionName>的集合,则替换<collectionName>的内容。mergeMerge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, overwrite that existing document.如果输出集合已存在,则将新结果与现有结果合并。如果现有文档与新结果具有相同的键,请覆盖该现有文档。reduceMerge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, apply the如果输出集合已存在,则将新结果与现有结果合并。如果现有文档与新结果具有相同的键,则对新文档和现有文档都应用reducefunction to both the new and the existing documents and overwrite the existing document with the result.reduce函数,并用结果覆盖现有文档。
db:Optional.可选。The name of the database that you want the map-reduce operation to write its output. By default this will be the same database as the input collection.您希望映射缩减操作写入其输出的数据库的名称。默认情况下,这将是与输入集合相同的数据库。
Output Inline输出内联
Perform the map-reduce operation in memory and return the result. This option is the only available option for 在内存中执行map-reduce操作并返回结果。此选项是副本集次要成员上out on secondary members of replica sets.out的唯一可用选项。
out: { inline: 1 }
The result must fit within the maximum size of a BSON document.结果必须符合BSON文档的最大大小。
Required Access所需访问权限
If your MongoDB deployment enforces authentication, the user executing the 如果您的MongoDB部署强制执行身份验证,则执行mapReduce command must possess the following privilege actions:mapReduce命令的用户必须拥有以下权限操作:
Map-reduce with 使用{out : inline} output option:{out : inline}输出选项进行映射缩减:
Map-reduce with the 输出到集合时,使用replace action when outputting to a collection:replace操作进行map-reduce:
Map-reduce with the 输出到集合时,使用merge or reduce actions when outputting to a collection:merge或reduce操作进行映射减少:
The readWrite built-in role provides the necessary permissions to perform map-reduce aggregation.readWrite内置角色提供执行map-reduce聚合所需的权限。
Restrictions限制
The mapReduce command no longer supports afterClusterTime. As such, mapReduce cannot be associated with causally consistent sessions.mapReduce命令不再支持afterClusterTime。因此,mapReduce不能与因果一致的会话相关联。
Map-Reduce Examples示例
In 在mongosh, the db.collection.mapReduce() method is a wrapper around the mapReduce command. mongosh中,db.collection.mapReduce()方法是mapReduce命令的包装器。The following examples use the 以下示例使用db.collection.mapReduce() method:db.collection.mapReduce()方法:
The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. 本节中的示例包括没有自定义聚合表达式的聚合管道替代方案。For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义表达式的替代方案,请参阅映射到聚合管道转换示例。
Create a sample collection 使用以下文档创建样本集合orders with these documents:orders:
db.orders.insertMany([
{ _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" },
{ _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" },
{ _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"},
{ _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }
])
Return the Total Price Per Customer返回每位客户的总价
Perform the map-reduce operation on the 对按orders collection to group by the cust_id, and calculate the sum of the price for each cust_id:cust_id分组的orders集合执行map-reduce操作,并计算每个cust_id的价格之和:
Define the map function to process each input document:定义映射函数来处理每个输入文档:In the function,在函数中,thisrefers to the document that the map-reduce operation is processing.this引用map-reduce操作正在处理的文档。The function maps the该函数将priceto thecust_idfor each document and emits thecust_idandprice.price映射到每个文档的cust_id,并发出cust_id和price。
var mapFunction1 = function() {
emit(this.cust_id, this.price);
};Define the corresponding reduce function with two arguments使用两个参数keyCustIdandvaluesPrices:keyCustId和valuesPrices定义相应的reduce函数:ThevaluesPricesis an array whose elements are thepricevalues emitted by the map function and grouped bykeyCustId.valuesPrices是一个数组,其元素是map函数发出的price值,并按keyCustId分组。The function reduces the该函数将valuesPricearray to the sum of its elements.valuesPrice数组缩减为其元素的总和。
var reduceFunction1 = function(keyCustId, valuesPrices) {
return Array.sum(valuesPrices);
};Perform map-reduce on all documents in the使用orderscollection using themapFunction1map function and thereduceFunction1reduce function:mapFunction1映射函数和reduceFunction1缩减函数对orders集合中的所有文档执行map-reduce:db.orders.mapReduce(
mapFunction1,
reduceFunction1,
{ out: "map_reduce_example" }
)This operation outputs the results to a collection named此操作将结果输出到名为map_reduce_example.map_reduce_example的集合中。If the如果map_reduce_examplecollection already exists, the operation will replace the contents with the results of this map-reduce operation.map_reduce_example集合已存在,则该操作将用此map-reduce操作的结果替换内容。Query the查询map_reduce_examplecollection to verify the results:map_reduce_example集合以验证结果:db.map_reduce_example.find().sort( { _id: 1 } )The operation returns these documents:该操作返回以下文档:{ "_id" : "Ant O. Knee", "value" : 95 }
{ "_id" : "Busby Bee", "value" : 125 }
{ "_id" : "Cam Elot", "value" : 60 }
{ "_id" : "Don Quis", "value" : 155 }
Aggregation Alternative聚合替代方案
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写map-reduce操作,而无需定义自定义函数:
db.orders.aggregate([
{ $group: { _id: "$cust_id", value: { $sum: "$price" } } },
{ $out: "agg_alternative_1" }
])
The$groupstage groups by thecust_idand calculates thevaluefield (See also$sum).$group阶段按cust_id分组并计算value字段(另见$sum)。Thevaluefield contains the totalpricefor eachcust_id.value字段包含每个cust_id的总price。The stage output the following documents to the next stage:该阶段将以下文件输出到下一阶段:{ "_id" : "Don Quis", "value" : 155 }
{ "_id" : "Ant O. Knee", "value" : 95 }
{ "_id" : "Cam Elot", "value" : 60 }
{ "_id" : "Busby Bee", "value" : 125 }Then, the然后,$outwrites the output to the collectionagg_alternative_1.$out将输出写入集合agg_alternative_1。Alternatively, you could use或者,您可以使用$mergeinstead of$out.$merge而不是$out。Query the查询agg_alternative_1collection to verify the results:agg_alternative_1集合以验证结果:db.agg_alternative_1.find().sort( { _id: 1 } )The operation returns the following documents:该操作返回以下文档:{ "_id" : "Ant O. Knee", "value" : 95 }
{ "_id" : "Busby Bee", "value" : 125 }
{ "_id" : "Cam Elot", "value" : 60 }
{ "_id" : "Don Quis", "value" : 155 }
Tip
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅映射到聚合管道转换示例。
Calculate Order and Total Quantity with Average Quantity Per Item使用每个项目的平均数量计算订单和总数量
In the following example, you will see a map-reduce operation on the 在下面的示例中,您将看到对所有orders collection for all documents that have an ord_date value greater than or equal to 2020-03-01.ord_date值大于或等于2020-03-01的文档的orders集合执行map-reduce操作。
The operation in the example:示例中的操作:
Groups by the按item.skufield, and calculates the number of orders and the total quantity ordered for eachsku.item.sku字段分组,并计算每个sku的订单数和订购总量。Calculates the average quantity per order for each计算每个skuvalue and merges the results into the output collection.sku值的每个订单的平均数量,并将结果合并到输出集合中。
When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.合并结果时,如果现有文档与新结果具有相同的键,则该操作会覆盖现有文档。如果没有具有相同键的现有文档,则操作将插入文档。
Example steps:示例步骤:
Define the map function to process each input document:定义映射函数来处理每个输入文档:In the function,在函数中,thisrefers to the document that the map-reduce operation is processing.this引用map-reduce操作正在处理的文档。For each item, the function associates the对于每个项目,该函数将skuwith a new objectvaluethat contains thecountof1and the itemqtyfor the order and emits thesku(stored in thekey) and thevalue.sku与一个新的对象value相关联,该对象值包含订单的count为1和项目qty,并发出sku(存储在key中)和value。
var mapFunction2 = function() {
for (var idx = 0; idx < this.items.length; idx++) {
var key = this.items[idx].sku;
var value = { count: 1, qty: this.items[idx].qty };
emit(key, value);
}
};Define the corresponding reduce function with two arguments使用两个参数keySKUandcountObjVals:keySKU和countObjVals定义相应的reduce函数:countObjValsis an array whose elements are the objects mapped to the grouped是一个数组,其元素是映射到keySKUvalues passed by map function to the reducer function.map函数传递给reducer函数的分组keySKU值的对象。The function reduces the该函数将countObjValsarray to a single objectreducedValuethat contains thecountand theqtyfields.countObjVals数组缩减为一个包含count和qty字段的单个对象reducedValue。In在reducedVal, thecountfield contains the sum of thecountfields from the individual array elements, and theqtyfield contains the sum of theqtyfields from the individual array elements.reducedVal中,count字段包含来自各个数组元素的count字段的总和,qty字段包含来自单个数组元素的qty字段的总和。
var reduceFunction2 = function(keySKU, countObjVals) {
reducedVal = { count: 0, qty: 0 };
for (var idx = 0; idx < countObjVals.length; idx++) {
reducedVal.count += countObjVals[idx].count;
reducedVal.qty += countObjVals[idx].qty;
}
return reducedVal;
};Define a finalize function with two arguments定义一个带有两个参数keyandreducedVal. The function modifies thereducedValobject to add a computed field namedavgand returns the modified object:key和reducedVal的finalize函数。该函数修改reducedVal对象以添加一个名为avg的计算字段,并返回修改后的对象:var finalizeFunction2 = function (key, reducedVal) {
reducedVal.avg = reducedVal.qty/reducedVal.count;
return reducedVal;
};Perform the map-reduce operation on the使用orderscollection using themapFunction2,reduceFunction2, andfinalizeFunction2functions:mapFunction2、reduceFunction2和finalizeFunction2函数对orders集合执行map-reduce操作:db.orders.mapReduce(
mapFunction2,
reduceFunction2,
{
out: { merge: "map_reduce_example2" },
query: { ord_date: { $gte: new Date("2020-03-01") } },
finalize: finalizeFunction2
}
);This operation uses the此操作使用queryfield to select only those documents withord_dategreater than or equal tonew Date("2020-03-01"). Then it outputs the results to a collectionmap_reduce_example2.query字段仅选择ord_date大于或等于new Date("2020-03-01")的文档。然后,它将结果输出到集合map_reduce_example2。If the如果map_reduce_example2collection already exists, the operation will merge the existing contents with the results of this map-reduce operation.map_reduce_example2集合已存在,则该操作将把现有内容与此map-reduce操作的结果合并。That is, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.也就是说,如果现有文档与新结果具有相同的键,则操作会覆盖现有文档。如果没有具有相同键的现有文档,则操作将插入文档。Query the查询map_reduce_example2collection to verify the results:map_reduce_example2集合以验证结果:db.map_reduce_example2.find().sort( { _id: 1 } )The operation returns these documents:该操作返回以下文档:{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
{ "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
{ "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
{ "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Aggregation Alternative聚合替代方案
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写map-reduce操作,而无需定义自定义函数:
db.orders.aggregate( [
{ $match: { ord_date: { $gte: new Date("2020-03-01") } } },
{ $unwind: "$items" },
{ $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } } },
{ $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } },
{ $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } }
] )
The$matchstage selects only those documents withord_dategreater than or equal tonew Date("2020-03-01").$match阶段仅选择ord_date大于或等于new Date("2020-03-01")的文档。The$unwindstage breaks down the document by theitemsarray field to output a document for each array element. For example:$unwind阶段按items数组字段分解文档,为每个数组元素输出一个文档。例如:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
...The$groupstage groups by theitems.sku, calculating for each sku:$group阶段按items.sku分组,为每个sku计算:{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
{ "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
{ "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
{ "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
{ "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }The$projectstage reshapes the output document to mirror the map-reduce's output to have two fields_idandvalue.$project阶段重塑输出文档,以反映map-reduce的输出,使其具有两个字段_id和value。The$projectsets:$project设置:The$unwindstage breaks down the document by theitemsarray field to output a document for each array element. For example:$unwind阶段按items数组字段分解文档,为每个数组元素输出一个文档。例如:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
{ "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
{ "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
...The$groupstage groups by theitems.sku, calculating for each sku:$group阶段按items.sku分组,为每个sku计算:Theqtyfield. Theqtyfield contains the totalqtyordered per eachitems.skuusing$sum.qty字段。qty字段包含使用$sum为每个items.sku订购的总qty。Theorders_idsarray. Theorders_idsfield contains an array of distinct order_id's for theitems.skuusing$addToSet.orders_ids数组。orders_ids字段包含一个使用$addToSet的items.sku的不同顺序_id数组。
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
{ "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
{ "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
{ "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
{ "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }The$projectstage reshapes the output document to mirror the map-reduce's output to have two fields_idandvalue.$project阶段重塑输出文档,以反映map-reduce的输出,使其具有两个字段_id和value。The$projectsets:$project设置:thevalue.countto the size of theorders_idsarray using$size.value.count成为orders_ids数组的长度,使用$size计算。thevalue.qtyto theqtyfield of input document.value.qty成为输入文档的qty字段。thevalue.avgto the average number of qty per order using$divideand$size.value.avg成为每个订单的平均数量,使用$divide和$size计算。
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
{ "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
{ "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
{ "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }Finally, the最后,$mergewrites the output to the collectionagg_alternative_3.$merge将输出写入集合agg_alternative_3。If an existing document has the same key如果现有文档的键_idas the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document._id与新结果相同,则该操作将覆盖现有文档。如果没有具有相同键的现有文档,则操作将插入文档。Query the查询agg_alternative_3collection to verify the results:agg_alternative_3集合以验证结果:db.agg_alternative_3.find().sort( { _id: 1 } )The operation returns the following documents:该操作返回以下文档:{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
{ "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
{ "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
{ "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Tip
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅映射到聚合管道转换示例。
For more information and examples, see the Map-Reduce page and Perform Incremental Map-Reduce有关更多信息和示例,请参阅映射缩减页面和执行增量映射缩减
Output输出
If you set the out parameter to write the results to a collection, the 如果设置mapReduce command returns a document in the following form:out参数将结果写入集合,则mapReduce命令将返回以下形式的文档:
{ "result" : "map_reduce_example", "ok" : 1 }
If you set the out parameter to output the results inline, the 如果将mapReduce command returns a document in the following form:out参数设置为内联输出结果,则mapReduce命令将返回以下形式的文档:
{
"results" : [
{
"_id" : <key>,
"value" :<reduced or finalizedValue for key>
},
...
],
"ok" : <int>
}mapReduce.resultFor output sent to a collection, this value is either:对于发送到集合的输出,此值为:
mapReduce.resultsFor output written inline, an array of resulting documents. Each resulting document contains two fields:对于内联编写的输出,是一组结果文档。每个生成的文档包含两个字段:_idfield contains the字段包含keyvalue,key值,valuefield contains the reduced or finalized value for the associated字段包含相关key.key的缩减或最终值。
mapReduce.okA value of值1indicates themapReducecommand ran successfully.1表示mapReduce命令已成功运行。A value of值为0indicates an error.0表示错误。
In addition to the aforementioned command specific return fields, the 除了上述特定于命令的返回字段外,db.runCommand() includes additional information:db.runCommand()还包括其他信息:
for replica sets:对于副本集:$clusterTime, andoperationTime.$clusterTime和operationTime。for sharded clusters:对于分片集群:operationTimeand$clusterTime.operationTime和$clusterTime。
See db.runCommand Response for details on these fields.有关这些字段的详细信息,请参阅dbrunCommand响应。