Database Manual / Reference / Query Language / CRUD Commands

mapReduce (database command)(数据库命令)

Note

Aggregation Pipeline as Alternative to Map-Reduce聚合管道作为Map-Reduce的替代方案

Starting in MongoDB 5.0, map-reduce is deprecated:从MongoDB 5.0开始,map-reduce被弃用:

  • Instead of map-reduce, you should use an aggregation pipeline. Aggregation pipelines provide better performance and usability than map-reduce.您应该使用聚合管道而不是map-reduce。聚合管道提供了比map-reduce更好的性能和可用性。
  • You can rewrite map-reduce operations using aggregation pipeline stages, such as $group, $merge, and others.您可以使用聚合管道阶段(如$group$merge等)重写map-reduce操作。
  • For map-reduce operations that require custom functionality, you can use the $accumulator and $function aggregation operators. 对于需要自定义功能的map-reduce操作,可以使用$accumulator$function聚合运算符。You can use those operators to define custom aggregation expressions in JavaScript.您可以使用这些运算符在JavaScript中定义自定义聚合表达式。

For examples of aggregation pipeline alternatives to map-reduce, see:有关map-reduce的聚合管道替代方案的示例,请参阅:

Definition定义

mapReduce

The mapReduce command allows you to run map-reduce aggregation operations over a collection.mapReduce命令允许您在集合上运行map-reduce聚合操作。

Tip

In mongosh, this command can also be run through the mapReduce() helper method.mongosh中,此命令也可以通过mapReduce()辅助方法运行。

Helper methods are convenient for mongosh users, but they may not return the same level of information as database commands. In cases where the convenience is not needed or the additional return fields are required, use the database command.助手方法对mongosh用户来说很方便,但它们可能不会返回与数据库命令相同级别的信息。如果不需要便利性或需要额外的返回字段,请使用database命令。

Compatibility兼容性

This command is available in deployments hosted in the following environments:此命令在以下环境中托管的部署中可用:

  • MongoDB Atlas: The fully managed service for MongoDB deployments in the cloud:云中MongoDB部署的完全托管服务

Important

This command is not supported in M0 and Flex clusters. For more information, see Unsupported Commands.M0和Flex集群不支持此命令。有关详细信息,请参阅不支持的命令

  • MongoDB Enterprise: The subscription-based, self-managed version of MongoDB:MongoDB的基于订阅的自我管理版本
  • MongoDB Community: The source-available, free-to-use, and self-managed version of MongoDB:MongoDB的源代码可用、免费使用和自我管理版本

Syntax语法

Note

MongoDB ignores the verbose option.MongoDB忽略了verbose选项。

Starting in version 4.2, MongoDB deprecates:从4.2版本开始,MongoDB弃用:

  • The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.map reduce选项用于创建新的分片集合,以及使用sharded选项进行map-reduce。要输出到分片集合,请先创建分片集合。MongoDB 4.2也不支持替换现有的分片集合。

The command has the following syntax:该命令具有以下语法:

db.runCommand(
{
mapReduce: <string>,
map: <string or JavaScript>,
reduce: <string or JavaScript>,
finalize: <string or JavaScript>,
out: <output>,
query: <document>,
sort: <document>,
limit: <number>,
scope: <document>,
jsMode: <boolean>,
verbose: <boolean>,
bypassDocumentValidation: <boolean>,
collation: <document>,
maxTimeMS: <integer>,
writeConcern: <document>,
comment: <any>
}
)

Command Fields命令字段

The command takes the following fields as arguments:该命令接受以下字段作为参数:

Field字段Type类型Description描述
mapReducestring字符串

The name of the collection on which you want to perform map-reduce. This collection will be filtered using query before being processed by the map function.要对其执行映射缩减的集合的名称。此集合在由map函数处理之前将使用query进行筛选。

Views do not support map-reduce operations.视图不支持map-reduce操作。

mapJavaScript or StringJavaScript或字符串

A JavaScript function that associates or "maps" a value with a key and emits the key and value pair. 一个JavaScript函数,将valuekey相关联或“映射”,并发出键和值对。You can specify the function as BSON type Javascript (BSON Type 13) or String (BSON Type 2).您可以将函数指定为BSON类型的Javascript(BSON类型13)或String(BSON类型2)。

For more information, see Requirements for the map Function.有关更多信息,请参阅map函数的要求

reduceJavaScript or StringJavaScript或字符串

A JavaScript function that "reduces" to a single object all the values associated with a particular key. You can specify the function as BSON type JavaScript (BSON Type 13) or String (BSON Type 2).一个JavaScript函数,将与特定key关联的所有values“简化”为一个对象。您可以将函数指定为BSON类型的JavaScript(BSON类型13)或字符串(BSON类别2)。

For more information, see Requirements for the reduce Function.有关更多信息,请参阅reduce函数的要求

outstring or document字符串或文档

Specifies where to output the result of the map-reduce operation. You can either output to a collection or return the result inline. 指定输出映射缩减操作结果的位置。您可以输出到集合,也可以内联返回结果。On a primary member of a replica set you can output either to a collection or inline, but on a secondary, only inline output is possible.在副本集的primary成员上,您可以输出到集合或内联,但在secondary成员上,只能进行内联输出。

For more information, see out Options.有关详细信息,请参阅out选项

querydocument文档

Optional. 可选。Specifies the selection criteria using query operators for determining the documents input to the map function.使用查询运算符指定选择条件,以确定输入到map函数的文档。

sortdocument文档

Optional. 可选。Sorts the input documents. This option is useful for optimization. For example, specify the sort key to be the same as the emit key so that there are fewer reduce operations. 对输入文档进行排序。此选项对于优化非常有用。例如,将排序键指定为与发射键相同,这样减少了reduce操作。The sort key must be in an existing index for this collection.排序键必须位于此集合的现有索引中。

limitnumber数字

Optional. 可选。Specifies a maximum number of documents for the input into the map function.指定map函数输入的最大文档数。

finalizeJavaScript or StringJavaScript或字符串

Optional. 可选。A JavaScript function that modifies the output after the reduce function. You can specify the function as BSON type JavaScript (BSON Type 13) or String (BSON Type 2).一个JavaScript函数,在reduce函数之后修改输出。您可以将函数指定为BSON类型的JavaScript(BSON类型13)或字符串(BSON类别2)。

For more information, see Requirements for the finalize Function.有关更多信息,请参阅finalize函数的要求

scopedocument文档

Optional. 可选。Specifies global variables that are accessible in the map, reduce and finalize functions.指定在mapreducefinalize函数中可访问的全局变量。

jsModeboolean布尔值

Optional. 可选。Specifies whether to convert intermediate data into BSON format between the execution of the map and reduce functions.指定在执行mapreduce函数之间是否将中间数据转换为BSON格式。

Defaults to false.默认为false

If false:如果为假:

  • Internally, MongoDB converts the JavaScript objects emitted by the map function to BSON objects. These BSON objects are then converted back to JavaScript objects when calling the reduce function.在内部,MongoDB将map函数发出的JavaScript对象转换为BSON对象。在调用reduce函数时,这些BSON对象会被转换回JavaScript对象。
  • The map-reduce operation places the intermediate BSON objects in temporary, on-disk storage. This allows the map-reduce operation to execute over arbitrarily large data sets.map reduce操作将中间BSON对象放置在临时磁盘存储中。这允许在任意大的数据集上执行映射缩减操作。

If true:如果为true

  • Internally, the JavaScript objects emitted during map function remain as JavaScript objects. There is no need to convert the objects for the reduce function, which can result in faster execution.在内部,map函数期间发出的JavaScript对象仍然是JavaScript对象。不需要转换reduce函数的对象,这可以加快执行速度。
  • You can only use jsMode for result sets with fewer than 500,000 distinct key arguments to the mapper's emit() function.您只能对映射器的emit()函数的不同key参数少于500000个的结果集使用jsMode
verboseboolean布尔值

Optional. 可选。Specifies whether to include the timing information in the result information. Set verbose to true to include the timing information.指定是否在结果信息中包含timing信息。将verbose设置为true以包含timing信息。

Defaults to false.默认为false

This option is ignored. The result information always excludes the timing information. 此选项被忽略。结果信息总是不包括timing(定时)信息。You can view timing information by running explain with the mapReduce command in the "executionStats" or "allPlansExecution" verbosity modes.您可以通过在verbosity(详细程度)模式"executionStats""allPlansExecution" 下使用mapReduce命令运行explain来查看计时信息。

bypassDocumentValidationboolean布尔值

Optional. 可选。Enables mapReduce to bypass schema validation during the operation. 允许mapReduce在操作过程中绕过架构验证。This lets you insert documents that do not meet the validation requirements.这允许您插入不符合验证要求的文档。

If the output option is set to inline, no schema validation occurs. 如果iytoyt选项设置为inline(内联),则不会进行模式验证。If the output goes to a collection, mapReduce observes any validation rules which the collection has and does not insert any invalid documents unless the bypassDocumentValidation parameter is set to true.如果输出到一个集合,mapReduce会遵守该集合所具有的任何验证规则,并且不会插入任何无效文档,除非bypassDocumentValidation参数设置为true

collationdocument文档

Optional.可选。

Specifies the collation to use for the operation.指定用于操作的排序规则

Collation allows users to specify language-specific rules for string comparison, such as rules for lettercase and accent marks.排序规则允许用户为字符串比较指定特定于语言的规则,例如字母大小写和重音标记的规则。

The collation option has the following syntax:排序规则选项具有以下语法:

collation: {
locale: <string>,
caseLevel: <boolean>,
caseFirst: <string>,
strength: <int>,
numericOrdering: <boolean>,
alternate: <string>,
maxVariable: <string>,
backwards: <boolean>
}

When specifying collation, the locale field is mandatory; all other collation fields are optional. For descriptions of the fields, see Collation Document.指定排序规则时,locale字段是必填的;所有其他排序字段都是可选的。有关字段的描述,请参阅排序规则文档

If the collation is unspecified but the collection has a default collation (see db.createCollection()), the operation uses the collation specified for the collection.如果未指定排序规则,但集合具有默认排序规则(请参阅db.createCollection()),则操作将使用为集合指定的排序规则。

If no collation is specified for the collection or for the operations, MongoDB uses the simple binary comparison used in prior versions for string comparisons.如果没有为集合或操作指定排序规则,MongoDB将使用以前版本中用于字符串比较的简单二进制比较。

You cannot specify multiple collations for an operation. For example, you cannot specify different collations per field, or if performing a find with a sort, you cannot use one collation for the find and another for the sort.不能为操作指定多个排序规则。例如,您不能为每个字段指定不同的排序规则,或者如果使用排序执行查找,则不能对查找使用一个排序规则,对排序使用另一个。

maxTimeMSnon-negative integer非负整数

Optional.可选。

Specifies a time limit in milliseconds. If you do not specify a value for maxTimeMS, operations will not time out. A value of 0 explicitly specifies the default unbounded behavior.指定以毫秒为单位的时间限制。如果不指定maxTimeMS的值,操作将不会超时。值0明确指定默认的无界行为。

MongoDB terminates operations that exceed their allotted time limit using the same mechanism as db.killOp(). MongoDB使用与db.killOp()相同的机制终止超过分配时间限制的操作。MongoDB only terminates an operation at one of its designated interrupt points.MongoDB仅在其指定的中断点之一终止操作。

writeConcerndocument文档

Optional. 可选。A document that expresses the write concern to use when outputting to a collection. Omit to use the default write concern.一种文档,表示在输出到集合时要使用的写入关注。省略使用默认写入关注。

commentany任意

Optional. 可选。A user-provided comment to attach to this command. Once set, this comment appears alongside records of this command in the following locations:用户提供了要附加到此命令的注释。设置后,此注释将与此命令的记录一起出现在以下位置:

A comment can be any valid BSON type (string, integer, object, array, etc).注释可以是任何有效的BSON类型(字符串、整数、对象、数组等)。

Usage用法

The following is a prototype usage of the mapReduce command:以下是mapReduce命令的原型用法:

var mapFunction = function() { ... };
var reduceFunction = function(key, values) { ... };

db.runCommand(
{
mapReduce: <input-collection>,
map: mapFunction,
reduce: reduceFunction,
out: { merge: <output-collection> },
query: <query>
}
)

Note

JavaScript in MongoDBMongoDB中的JavaScript

Although mapReduce uses JavaScript, most interactions with MongoDB do not use JavaScript but use an idiomatic driver in the language of the interacting application.虽然mapReduce使用JavaScript,但与MongoDB的大多数交互都不使用JavaScript,而是使用交互应用程序语言中的惯用驱动程序。

Requirements for the map Functionmap函数的要求

The map function is responsible for transforming each input document into zero or more documents. It can access the variables defined in the scope parameter, and has the following prototype:map函数负责将每个输入文档转换为零个或多个文档。它可以访问作用域参数中定义的变量,并具有以下原型:

function() {
...
emit(key, value);
}

The map function has the following requirements:map函数有以下要求:

  • In the map function, reference the current document as this within the function.map函数中,将当前文档引用为函数中的this
  • The map function should not access the database for any reason.无论出于何种原因,map函数都不应访问数据库。
  • The map function should be pure, or have no impact outside of the function (i.e. side effects.)map函数应该是纯的,或者在函数之外没有影响(即副作用)
  • The map function may optionally call emit(key,value) any number of times to create an output document associating key with value.map函数可以可选地调用emit(key,value)任意次数,以创建将keyvalue相关联的输出文档。

The following map function will call emit(key,value) either 0 or 1 times depending on the value of the input document's status field:根据输入文档status字段的值,以下map函数将调用emit(key,value)0或1次:

function() {
if (this.status == 'A')
emit(this.cust_id, 1);
}

The following map function may call emit(key,value) multiple times depending on the number of elements in the input document's items field:根据输入文档的items字段中的元素数量,以下map函数可能会多次调用emit(key,value)

function() {
this.items.forEach(function(item){ emit(item.sku, 1); });
}

Requirements for the reduce Functionreduce函数的要求

The reduce function has the following prototype:reduce函数具有以下原型:

function(key, values) {
...
return result;
}

The reduce function exhibits the following behaviors:reduce函数表现出以下行为:

  • The reduce function should not access the database, even to perform read operations.reduce函数不应该访问数据库,即使是执行读取操作。
  • The reduce function should not affect the outside system.reduce函数不应影响外部系统。
  • MongoDB can invoke the reduce function more than once for the same key. MongoDB可以对同一个键多次调用reduce函数。In this case, the previous output from the reduce function for that key will become one of the input values to the next reduce function invocation for that key.在这种情况下,该键的reduce函数的前一个输出将成为该键的下一个reduce函数调用的输入值之一。
  • The reduce function can access the variables defined in the scope parameter.reduce函数可以访问scope参数中定义的变量。
  • The inputs to reduce must not be larger than half of MongoDB's maximum BSON document size. reduce的输入不得大于MongoDB最大BSON文档大小的一半。This requirement may be violated when large documents are returned and then joined together in subsequent reduce steps.当返回大型文档并在后续reduce步骤中将其连接在一起时,可能会违反此要求。

Because it is possible to invoke the reduce function more than once for the same key, the following properties need to be true:因为可以对同一个键多次调用reduce函数,所以以下属性需要为真:

  • the type of the return object must be identical to the type of the value emitted by the map function.返回对象的类型必须与map函数发出的value的类型相同。
  • the reduce function must be associative. The following statement must be true:reduce函数必须是关联的。以下语句必须为true

    reduce(key, [ C, reduce(key, [ A, B ]) ] ) == reduce( key, [ C, A, B ] )
  • the reduce function must be idempotent. Ensure that the following statement is true:reduce函数必须是幂等的。确保以下语句为true

    reduce( key, [ reduce(key, valuesArray) ] ) == reduce( key, valuesArray )
  • the reduce function should be commutative: that is, the order of the elements in the valuesArray should not affect the output of the reduce function, so that the following statement is true:reduce函数应该是可交换的:也就是说,valuesArray中元素的顺序不应该影响reduce函数的输出,因此以下语句为true

    reduce( key, [ A, B ] ) == reduce( key, [ B, A ] )

Requirements for the finalize Functionfinalize函数的要求

The finalize function has the following prototype:finalize函数具有以下原型:

function(key, reducedValue) {
...
return modifiedObject;
}

The finalize function receives as its arguments a key value and the reducedValue from the reduce function. Be aware that:finalize函数从reduce函数接收key值和reducedValue作为其参数。请注意:

  • The finalize function should not access the database for any reason.finalize函数不应出于任何原因访问数据库。
  • The finalize function should be pure, or have no impact outside of the function (i.e. side effects.)finalize函数应该是纯的,或者在函数之外没有影响(即副作用)
  • The finalize function can access the variables defined in the scope parameter.finalize函数可以访问scope(作用域)参数中定义的变量。

out Options选项

You can specify the following options for the out parameter:您可以为out参数指定以下选项:

Output to a Collection输出到集合

This option outputs to a new collection, and is not available on secondary members of replica sets.此选项输出到新集合,在副本集的辅助成员上不可用。

out: <collectionName>

Output to a Collection with an Action通过操作输出到集合

Note

Starting in version 4.2, MongoDB deprecates:从4.2版本开始,MongoDB弃用:

  • The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. map-reduce选项用于创建新的分片集合,以及使用sharded选项进行map-reduce。To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.要输出到分片集合,请先创建分片集合。MongoDB 4.2也不支持替换现有的分片集合。

This option is only available when passing a collection that already exists to out. It is not available on secondary members of replica sets.此选项仅在将已存在的集合传递到out时可用。它在副本集的辅助成员上不可用。

out: { <action>: <collectionName>
[, db: <dbName>]
[, sharded: <boolean> ] }

When you output to a collection with an action, the out has the following parameters:当您通过操作输出到集合时,out具有以下参数:

  • <action>: Specify one of the following actions::指定以下操作之一:

    • replace

      Replace the contents of the <collectionName> if the collection with the <collectionName> exists.如果存在具有<collectionName>的集合,则替换<collectionName>的内容。

    • merge

      Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, overwrite that existing document.如果输出集合已存在,则将新结果与现有结果合并。如果现有文档与新结果具有相同的键,请覆盖该现有文档。

    • reduce

      Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, apply the reduce function to both the new and the existing documents and overwrite the existing document with the result.如果输出集合已存在,则将新结果与现有结果合并。如果现有文档与新结果具有相同的键,则对新文档和现有文档都应用reduce函数,并用结果覆盖现有文档。

  • db:

    Optional. 可选。The name of the database that you want the map-reduce operation to write its output. By default this will be the same database as the input collection.您希望映射缩减操作写入其输出的数据库的名称。默认情况下,这将是与输入集合相同的数据库。

Output Inline输出内联

Perform the map-reduce operation in memory and return the result. This option is the only available option for out on secondary members of replica sets.在内存中执行map-reduce操作并返回结果。此选项是副本集次要成员上out的唯一可用选项。

out: { inline: 1 }

The result must fit within the maximum size of a BSON document.结果必须符合BSON文档的最大大小

Required Access所需访问权限

If your MongoDB deployment enforces authentication, the user executing the mapReduce command must possess the following privilege actions:如果您的MongoDB部署强制执行身份验证,则执行mapReduce命令的用户必须拥有以下权限操作:

Map-reduce with {out : inline} output option:使用{out : inline}输出选项进行映射缩减:

Map-reduce with the replace action when outputting to a collection:输出到集合时,使用replace操作进行map-reduce:

Map-reduce with the merge or reduce actions when outputting to a collection:输出到集合时,使用mergereduce操作进行映射减少:

The readWrite built-in role provides the necessary permissions to perform map-reduce aggregation.readWrite内置角色提供执行map-reduce聚合所需的权限。

Restrictions限制

The mapReduce command no longer supports afterClusterTime. As such, mapReduce cannot be associated with causally consistent sessions.mapReduce命令不再支持afterClusterTime。因此,mapReduce不能与因果一致的会话相关联。

Map-Reduce Examples示例

In mongosh, the db.collection.mapReduce() method is a wrapper around the mapReduce command. mongosh中,db.collection.mapReduce()方法是mapReduce命令的包装器。The following examples use the db.collection.mapReduce() method:以下示例使用db.collection.mapReduce()方法:

The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. 本节中的示例包括没有自定义聚合表达式的聚合管道替代方案。For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义表达式的替代方案,请参阅映射到聚合管道转换示例

Create a sample collection orders with these documents:使用以下文档创建样本集合orders

db.orders.insertMany([
{ _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" },
{ _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" },
{ _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"},
{ _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
{ _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }
])

Return the Total Price Per Customer返回每位客户的总价

Perform the map-reduce operation on the orders collection to group by the cust_id, and calculate the sum of the price for each cust_id:对按cust_id分组的orders集合执行map-reduce操作,并计算每个cust_id的价格之和:

  1. Define the map function to process each input document:定义映射函数来处理每个输入文档:

    • In the function, this refers to the document that the map-reduce operation is processing.在函数中,this引用map-reduce操作正在处理的文档。
    • The function maps the price to the cust_id for each document and emits the cust_id and price.该函数将price映射到每个文档的cust_id,并发出cust_idprice
    var mapFunction1 = function() {
    emit(this.cust_id, this.price);
    };
  2. Define the corresponding reduce function with two arguments keyCustId and valuesPrices:使用两个参数keyCustIdvaluesPrices定义相应的reduce函数:

    • The valuesPrices is an array whose elements are the price values emitted by the map function and grouped by keyCustId.valuesPrices是一个数组,其元素是map函数发出的price值,并按keyCustId分组。
    • The function reduces the valuesPrice array to the sum of its elements.该函数将valuesPrice数组缩减为其元素的总和。
    var reduceFunction1 = function(keyCustId, valuesPrices) {
    return Array.sum(valuesPrices);
    };
  3. Perform map-reduce on all documents in the orders collection using the mapFunction1 map function and the reduceFunction1 reduce function:使用mapFunction1映射函数和reduceFunction1缩减函数对orders集合中的所有文档执行map-reduce:

    db.orders.mapReduce(
    mapFunction1,
    reduceFunction1,
    { out: "map_reduce_example" }
    )

    This operation outputs the results to a collection named map_reduce_example. 此操作将结果输出到名为map_reduce_example的集合中。If the map_reduce_example collection already exists, the operation will replace the contents with the results of this map-reduce operation.如果map_reduce_example集合已存在,则该操作将用此map-reduce操作的结果替换内容。

  4. Query the map_reduce_example collection to verify the results:查询map_reduce_example集合以验证结果:

    db.map_reduce_example.find().sort( { _id: 1 } )

    The operation returns these documents:该操作返回以下文档:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }
Aggregation Alternative聚合替代方案

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写map-reduce操作,而无需定义自定义函数:

db.orders.aggregate([
{ $group: { _id: "$cust_id", value: { $sum: "$price" } } },
{ $out: "agg_alternative_1" }
])
  1. The $group stage groups by the cust_id and calculates the value field (See also $sum). $group阶段按cust_id分组并计算value字段(另见$sum)。The value field contains the total price for each cust_id.value字段包含每个cust_id的总price

    The stage output the following documents to the next stage:该阶段将以下文件输出到下一阶段:

    { "_id" : "Don Quis", "value" : 155 }
    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Busby Bee", "value" : 125 }
  2. Then, the $out writes the output to the collection agg_alternative_1. 然后,$out将输出写入集合agg_alternative_1Alternatively, you could use $merge instead of $out.或者,您可以使用$merge而不是$out
  3. Query the agg_alternative_1 collection to verify the results:查询agg_alternative_1集合以验证结果:

    db.agg_alternative_1.find().sort( { _id: 1 } )

    The operation returns the following documents:该操作返回以下文档:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }

Tip

For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅映射到聚合管道转换示例

Calculate Order and Total Quantity with Average Quantity Per Item使用每个项目的平均数量计算订单和总数量

In the following example, you will see a map-reduce operation on the orders collection for all documents that have an ord_date value greater than or equal to 2020-03-01.在下面的示例中,您将看到对所有ord_date值大于或等于2020-03-01的文档的orders集合执行map-reduce操作。

The operation in the example:示例中的操作:

  1. Groups by the item.sku field, and calculates the number of orders and the total quantity ordered for each sku.item.sku字段分组,并计算每个sku的订单数和订购总量。
  2. Calculates the average quantity per order for each sku value and merges the results into the output collection.计算每个sku值的每个订单的平均数量,并将结果合并到输出集合中。

When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.合并结果时,如果现有文档与新结果具有相同的键,则该操作会覆盖现有文档。如果没有具有相同键的现有文档,则操作将插入文档。

Example steps:示例步骤:

  1. Define the map function to process each input document:定义映射函数来处理每个输入文档:

    • In the function, this refers to the document that the map-reduce operation is processing.在函数中,this引用map-reduce操作正在处理的文档。
    • For each item, the function associates the sku with a new object value that contains the count of 1 and the item qty for the order and emits the sku (stored in the key) and the value.对于每个项目,该函数将sku与一个新的对象value相关联,该对象值包含订单的count1和项目qty,并发出sku(存储在key中)和value
     var mapFunction2 = function() {
    for (var idx = 0; idx < this.items.length; idx++) {
    var key = this.items[idx].sku;
    var value = { count: 1, qty: this.items[idx].qty };

    emit(key, value);
    }
    };
  2. Define the corresponding reduce function with two arguments keySKU and countObjVals:使用两个参数keySKUcountObjVals定义相应的reduce函数:

    • countObjVals is an array whose elements are the objects mapped to the grouped keySKU values passed by map function to the reducer function.是一个数组,其元素是映射到map函数传递给reducer函数的分组keySKU值的对象。
    • The function reduces the countObjVals array to a single object reducedValue that contains the count and the qty fields.该函数将countObjVals数组缩减为一个包含countqty字段的单个对象reducedValue
    • In reducedVal, the count field contains the sum of the count fields from the individual array elements, and the qty field contains the sum of the qty fields from the individual array elements.reducedVal中,count字段包含来自各个数组元素的count字段的总和,qty字段包含来自单个数组元素的qty字段的总和。
    var reduceFunction2 = function(keySKU, countObjVals) {
    reducedVal = { count: 0, qty: 0 };

    for (var idx = 0; idx < countObjVals.length; idx++) {
    reducedVal.count += countObjVals[idx].count;
    reducedVal.qty += countObjVals[idx].qty;
    }

    return reducedVal;
    };
  3. Define a finalize function with two arguments key and reducedVal. The function modifies the reducedVal object to add a computed field named avg and returns the modified object:定义一个带有两个参数keyreducedValfinalize函数。该函数修改reducedVal对象以添加一个名为avg的计算字段,并返回修改后的对象:

    var finalizeFunction2 = function (key, reducedVal) {
    reducedVal.avg = reducedVal.qty/reducedVal.count;
    return reducedVal;
    };
  4. Perform the map-reduce operation on the orders collection using the mapFunction2, reduceFunction2, and finalizeFunction2 functions:使用mapFunction2reduceFunction2finalizeFunction2函数对orders集合执行map-reduce操作:

    db.orders.mapReduce(
    mapFunction2,
    reduceFunction2,
    {
    out: { merge: "map_reduce_example2" },
    query: { ord_date: { $gte: new Date("2020-03-01") } },
    finalize: finalizeFunction2
    }
    );

    This operation uses the query field to select only those documents with ord_date greater than or equal to new Date("2020-03-01"). Then it outputs the results to a collection map_reduce_example2.此操作使用query字段仅选择ord_date大于或等于new Date("2020-03-01")的文档。然后,它将结果输出到集合map_reduce_example2

    If the map_reduce_example2 collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. 如果map_reduce_example2集合已存在,则该操作将把现有内容与此map-reduce操作的结果合并。That is, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.也就是说,如果现有文档与新结果具有相同的键,则操作会覆盖现有文档。如果没有具有相同键的现有文档,则操作将插入文档。

  5. Query the map_reduce_example2 collection to verify the results:查询map_reduce_example2集合以验证结果:

    db.map_reduce_example2.find().sort( { _id: 1 } )

    The operation returns these documents:该操作返回以下文档:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Aggregation Alternative聚合替代方案

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,您可以重写map-reduce操作,而无需定义自定义函数:

db.orders.aggregate( [
{ $match: { ord_date: { $gte: new Date("2020-03-01") } } },
{ $unwind: "$items" },
{ $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } } },
{ $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } },
{ $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } }
] )
  1. The $match stage selects only those documents with ord_date greater than or equal to new Date("2020-03-01").$match阶段仅选择ord_date大于或等于new Date("2020-03-01")的文档。
  2. The $unwind stage breaks down the document by the items array field to output a document for each array element. For example:$unwind阶段按items数组字段分解文档,为每个数组元素输出一个文档。例如:

    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    ...
  3. The $group stage groups by the items.sku, calculating for each sku:$group阶段按items.sku分组,为每个sku计算:

    • The qty field. The qty field contains theqty字段。qty字段包含
      total qty ordered per each items.sku (See $sum).每件items.sku的总订购数量qty(见$sum)。
    • The orders_ids array. The orders_ids field contains anorders_ids数组。orders_ids字段包含
      array of distinct order _id's for the items.sku (See $addToSet).items.sku的不同顺序_id的数组(请参阅$addToSet)。
    { "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
    { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
    { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
    { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
    { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }
  4. The $project stage reshapes the output document to mirror the map-reduce's output to have two fields _id and value. $project阶段重塑输出文档,以反映map-reduce的输出,使其具有两个字段_idvalueThe $project sets:$project设置:
  5. The $unwind stage breaks down the document by the items array field to output a document for each array element. For example:$unwind阶段按items数组字段分解文档,为每个数组元素输出一个文档。例如:

    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    ...
  6. The $group stage groups by the items.sku, calculating for each sku:$group阶段按items.sku分组,为每个sku计算:

    • The qty field. The qty field contains the total qty ordered per each items.sku using $sum.qty字段。qty字段包含使用$sum为每个items.sku订购的总qty
    • The orders_ids array. The orders_ids field contains an array of distinct order _id's for the items.sku using $addToSet.orders_ids数组。orders_ids字段包含一个使用$addToSetitems.sku的不同顺序_id数组。
    { "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
    { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
    { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
    { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
    { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }
  7. The $project stage reshapes the output document to mirror the map-reduce's output to have two fields _id and value. $project阶段重塑输出文档,以反映map-reduce的输出,使其具有两个字段_idvalueThe $project sets:$project设置:

    • the value.count to the size of the orders_ids array using $size.value.count成为orders_ids数组的长度,使用$size计算。
    • the value.qty to the qty field of input document.value.qty成为输入文档的qty字段。
    • the value.avg to the average number of qty per order using $divide and $size.value.avg成为每个订单的平均数量,使用$divide$size计算。
    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
  8. Finally, the $merge writes the output to the collection agg_alternative_3. 最后,$merge将输出写入集合agg_alternative_3If an existing document has the same key _id as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.如果现有文档的键_id与新结果相同,则该操作将覆盖现有文档。如果没有具有相同键的现有文档,则操作将插入文档。
  9. Query the agg_alternative_3 collection to verify the results:查询agg_alternative_3集合以验证结果:

    db.agg_alternative_3.find().sort( { _id: 1 } )

    The operation returns the following documents:该操作返回以下文档:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }

Tip

For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方案,请参阅映射到聚合管道转换示例

For more information and examples, see the Map-Reduce page and Perform Incremental Map-Reduce有关更多信息和示例,请参阅映射缩减页面和执行增量映射缩减

Output输出

If you set the out parameter to write the results to a collection, the mapReduce command returns a document in the following form:如果设置out参数将结果写入集合,则mapReduce命令将返回以下形式的文档:

{ "result" : "map_reduce_example", "ok" : 1 }

If you set the out parameter to output the results inline, the mapReduce command returns a document in the following form:如果将out参数设置为内联输出结果,则mapReduce命令将返回以下形式的文档:

{
"results" : [
{
"_id" : <key>,
"value" :<reduced or finalizedValue for key>
},
...
],
"ok" : <int>
}
mapReduce.result

For output sent to a collection, this value is either:对于发送到集合的输出,此值为:

  • a string for the collection name if out did not specify the database name, or如果out未指定数据库名称,则提供集合名称的字符串,或
  • a document with both db and collection fields if out specified both a database and collection name.同时具有dbcollection字段的文档(如果out同时指定了数据库和集合名称)。
mapReduce.results

For output written inline, an array of resulting documents. Each resulting document contains two fields:对于内联编写的输出,是一组结果文档。每个生成的文档包含两个字段:

  • _id field contains the key value,字段包含key值,
  • value field contains the reduced or finalized value for the associated key.字段包含相关key的缩减或最终值。
mapReduce.ok
A value of 1 indicates the mapReduce command ran successfully. 1表示mapReduce命令已成功运行。A value of 0 indicates an error.值为0表示错误。

In addition to the aforementioned command specific return fields, the db.runCommand() includes additional information:除了上述特定于命令的返回字段外,db.runCommand()还包括其他信息:

  • for replica sets: $clusterTime, and operationTime.对于副本集:$clusterTimeoperationTime
  • for sharded clusters: operationTime and $clusterTime.对于分片集群:operationTime$clusterTime

See db.runCommand Response for details on these fields.有关这些字段的详细信息,请参阅dbrunCommand响应

Additional Information附加信息